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Introduction 

Model rocketry is an excellent approach to the intricacies and applications of physics that spark 
curiosity and entertainment. It concerns insightful investigation, extensive experimentation and 
creative design to maximize reliability, a key factor within rocket science. Therefore, simulation 
software is frequently utilized to predict the flightpath of a rocket to minimize risks.  

My interest in this topic originates from the development of an advanced model rocket, Apex Beta, I 
have been working on for over a year already, which uses thrust vector to control its attitude, along 
with a set of complex systems including a reaction wheel, avionics and a recovery system. An 
adventurous project I embarked on inspired by my keen enthusiasm towards engineering and space 
and the recent outstanding developments in aerospace technologies. However, no available 
simulation software is compatible with such complex systems featured in advanced model rocketry, 
which sets a perfect opportunity to deeply understand the physics of rockets and contribute to the 
community by developing simulation software for advanced model rockets, namely Apex Dream. 

Research question 

Therefore, this work aims to explore the extent to which different forces influence the flightpath of 
a rocket, accounting for thrust, weight and even aerodynamic forces, and more importantly, how to 
estimate them. This sets a fun physics challenges due to the lack of documentation on the chaotic 
nature of aerodynamics. Hence the research question: 

How may the flightpath of a thrust vectored controlled model rocket be predicted through the 
consideration of thrust, weight and the aerodynamic forces acting on it? 

Action plan: 

The development of flight simulation software requires a detailed understanding of aerodynamics 
and reliable estimates. Therefore, the forces acting on a rocket will be first discuss at a theoretical 
level, and later estimated with empirical formulae, retrieved from experimental data and theoretical 
approaches. Finally, flight simulations will be compared to experimental data to verify the 
reliability of the product. Extensive research has been made within this topic; however, there is no 
defined mathematical model that describe the complex nature of aerodynamics. Thus, different 
models were selected and combined based on their reliability and similarity to experimental data. 
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Gravitational force 

Weight 

Weight is the resultant force exerted by the 
gravitational attraction on every component of 
a rocket . When added together, the 
gravitational forces may be viewed as a single 
force originating from the centre of gravity 
(CG ), whose location varies with the weight 
distribution of an object, as depicted by fig. 1. 
Calculating a rocket’s gravitational force is 
therefore a simple matter of determining its 
total mass and CG. 

Torque 

Moreover, a rocket’s pivot point, around which 
every rotation will occur, is denoted by its CG. 
Any force applied to an object, if it does not 
pass through this point, will not only cause a 
translation, but also a rotational force referred 
to as torque , which may be used to calculate 
the angular acceleration . Note that rotational 
forces do not interfere with linear forces. 

Where  is the rotational inertia, which is the 
opposition exhibited by an object to the change 
in angular velocity, just like mass defines the 
resistance to linear acceleration. Its value is 
expressed in , and may be calculated 
for each component of a rocket through 
standard formulae presented in ref. [1] (Nave, 
2017) and combined to obtain the total moment 
of inertia.    

Propulsive force 

Thrust 

Thrust refers to the rocket’s propulsive force, 
generated by exhausting gas or liquid in the 
opposite direction to that of the desired 
translation. Thus, the thrust of a motor is 
directly proportional to the velocity  of the 
working fluid and the mass per time unit  that 
is exhausted. 

τ
α

I

kg ⋅ m2

vt
·m

2

τ = d ⋅ Fsin(θ ) (1)
τ = I ⋅ α

T = ·mvt + At(pt − po) (3)

(2)

Fig. 1 - Variation of a rocket’s CG 
location with weight distribution. 

Fig. 2 - Torque exerted around a rocket’s 
pivot point due to unaligned forces.

Fig. 3 - Thrust of a rocket 
and its components.



Were  is the exhaust area,  is the pressure of 
the working fluid, and  is the free stream 
pressure.  

The thrust of commercial model rocket motors 
as a function of time have been measured in 
static fire tests and are readily available online 
at ref. [2] (Coker, 2022). This data may be used 
by the flight simulations to calculate the thrust 
at different times of the flight. 

Thrust vectoring 

Directing a rocket’s thrust to control its angular 
velocity is known as thrust vectoring. 
Nominally, the thrust vector is aligned with the 
rocket’s centreline, and thus, exerts no torque. 

Otherwise, a pitching moment may be created 
by deflecting the thrust vector from the CG. 

Aerodynamic Forces 

In contact, fluids will exert a force on an object 
whenever there is a relative motion between 
both, and may be divided into drag , tangent 
to the flow, and lift , perpendicular to the 
flow. These forces are aerodynamic if the fluid 
is a gas, or hydrodynamic if it is a liquid. 

Drag 

Pressure drag is the outcome of forcing a 
fluid’s flow around an object, detaching the 
boundary layer from the body generating a 
wake of recirculating flow. Whenever a fluid is 
deflected by an object, it will attempt to 
maintain contact with its surface, hindered by 
sharper edges. This leads to different fluid 
accelerations at diverse points perpendicular to 
the surface, and perhaps, flow separation if the 
changes of the fluid’s velocity prevent it from 
adhering to the surface. 

Acceleration is higher at the impact point and 
lower where the fluid tries to fill up the spaces, 
as seen in fig. 7. This creates a difference in 
pressure between the front and rear of an 
object, proportional to the resulting net force, 
retarding forward motion. Flow separation may 
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Fig. 4 - Thrust of a D3-P motor over time. 

Fig. 5 - Torque exerted by thrust vectoring.

Fig. 6 - Components of aerodynamic 
forces relative to the flow.



also cause vortex shedding, an oscillating flow 
that takes place when fluids flow as opposed to 
streamlined, which may cause undesired 
vibrations and instability. 

Friction drag is the result of the friction 
between a fluid and an object’s surface. Shear 
stresses create a region where flow varies from 
rest, near the walls of an object, to a maximum 
velocity at the main stream of the flow as 
shown by fig. 7. These shearing forces, that 
push different parts of a body or fluid in 
opposite directions simultaneously, rely on the 
fluid’s viscosity to exert drag forces tangential 
to the surface and deductively, proportional to 
the exposed or wetted area. Greater shear 
stresses or velocity gradients translate into 
higher friction forces. 

The nearest fluid layer to a surface is identified 
as the boundary layer and might be laminar or 
turbulent, characterized by smooth paths and 
chaotic movement respectively. The Reynolds 
number, calculated using eq. (10), helps 
identify the type of flow and predict flow 
patterns, which will be looked at in more detail 
later in the paper. Drag forces under turbulent 
flow, associated with higher Re, are greater to 
those encountered in laminar flow, attributed to 
low Re, due to the more irregular interactions 
with an object’s surface. 

The resultant drag force may be obtained as 
suggested by ref. [3] (Nakayama, 2018) by 
integrating the pressure  and friction  
contributions over the surface area , if the 
distribution of these forces is known the drag. 
Hence: 

Where  is the angle between the flow vectors 
and the normal to the surface, such that the 
components of the pressure and friction 
tangential to the flow are obtained. However, 
this scenario is highly unlikely and requires 
complex computational fluid dynamics, so the 
following equation derived in ref. [4] 
(Maxemow, 2013) may be used instead: 

The equation above requires determining a 
value for the drag coefficient , which varies 
with each set of fluid conditions and object’s 
shape and angle of attack. Experimentation 
demonstrates that for fixed drag coefficients 
the resultant drag appears to be proportional to 

p f
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(4)D = ∫A
(−pdcos(φ) + fdsin(φ))d A

D = 1
2 pf v2

f CD Ar (5)

Fig. 6 - Pressure drag as a result of 
pressure variation and flow deflection.

Fig. 7 - Friction drag as a result of greater 
shear stresses and velocity gradients.
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the pressure of the fluid , the flow’s velocity 

 squared and the reference area , 

commonly defined as the cross sectional area. 
Correlations from which eq. (5) may be 
obtained. Nonetheless, determining the  of 
an object becomes complex due to the multiple 
factors this coefficient accounts for and the 
chaotic nature of fluids. Therefore, it is 
typically done experimentally; however, for the 
purpose of this work a method to calculate a 
plausible approximation will be presented later. 

Lift 

Newton’s third law of motion states that, for 
every action, there is an equal and opposition 
reaction, and explains how an object may be 
forced in the opposite direction to the deflected 
fluid.  Variations in the angle of attack lead to 
different fluid deflection patterns, and thus, 
diverse lift contributions. Additionally, as the 
flow of a fluid is deflected over the surface of a 
body, its pressure varies at different points. 
Flow will be faster wherever there is more 
surface area to cover, leading to lower 
pressures. This uneven distribution of pressure 
across an object will force an object and 
contribute to the lift. 

Rockets generally have low lift to drag ratios 
as they already use thrust instead of lift to 
oppose weight, making this aerodynamic force 
undesirable in rocketry. However, lift should 
not be neglected given its significant variation 
upon the angle of attack and considerable 
effect on a rocket’s flightpath. 

Similar to drag calculations, lift force may be 
obtained by integrating the pressure p and 
friction f contributions over the surface area, if 
the distribution of these forces is known. Such 
that: 

Where  is utilized to obtain the components 
of the pressure and friction perpendicular to the 
flow. Otherwise, lift may be calculated with the 
the more pragmatic equation: 

Formulae to estimate the lift coefficient  will 
be provided later on as an alternative to 
experimental calculations. 

Aerodynamic Properties 

As noted previously, drag and lift are oriented 
in respect to the flow’s direction, being 
tangential and perpendicular to it respectively. 
However, for simplicity, these forces may be 
divided into an alternate set of perpendicular 
components, axial drag , tangential to the 
body, and normal force , perpendicular to the 
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L = 1
2 pf v2

f CL Ar

(6)

(7)

L = ∫A
(−pdsin(φ) + fdcos(φ))d A

Fig. 8 - Lift due to a variation of pressure 
and a counter-action to the flow deflection.



body, for which their respective coefficients 
will be empirically calculated. 

Therefore: 

Flow 

Note that the flow  of a fluid is relative to the 
velocity of an object. Despite the apparent 
original velocity  of the fluid to a stationary 
object or the wind for instance, the flow will 
tend to oppose the velocity of the object  as it 
gains speed and overweights the fluid’s 
apparent velocity to an observer in rest. The 
flow’s velocity  may be simply calculated by 

adding up the velocity vector of the wind and 
the inverse velocity vector of the rocket. 

Mach and Reynolds numbers 

Aerodynamic properties may be calculated 
using the object’s Mach number or the fluid’s 
Reynolds number, due to the more apparent 
relations between aerodynamic forces and 
these ratios that describe the speed of an object 
or fluid with respect to other factors. 

The Mach number  is the ratio of the speed 
of an object to the speed of sound , which 
varies with the medium’s density and 
temperature, assumed to be constant in this 
work given that model rockets typically fly at 
low altitudes, where differences are not 
significant. At higher speeds, a body will 
locally compress the fluid and alter its density, 
on which the aerodynamic forces depend. 
While compressibility factors may be ignored 
at subsonic speeds, they become important at 
transonic and supersonic speeds as discussed in 
ref. [5] (Hall, 2021). 

The parameter  frequently appears in 
aerodynamical equations , characterizing the 
flow speed in subsonic and supersonic flow, 
such that as the flow speed tends to the 
transonic region at ,  approaches . 

The Reynolds number  is the ratio of inertial 
forces to viscous forces. This similarity 
parameter is used to identify flow patterns 
whenever a fluid is disturbed and forced across 

f

vw

vo

vf

M
c

β

M = 1 β 0

Re

6

⃗vf = ⃗vw − ⃗vo (10)

M = vo

c
(11)

β = � M2 − 1 � (12)

D = N sin(α) + A cos(α)
L = N cos(α) − A sin(α)

(8)
(9)

Fig. 9 - Components of aerodynamic 
forces relative to the rocket.

Fig. 10 - Relative flow obtained from the 
velocities of the wind and the rocket.



an object, commonly categorized as laminar or 
turbulent, attributed to low and high 
respectively. 

Angle of Attack 

Aerodynamic properties are subject to the 
angle between the flow and an object’t 
centreline, namely the angle of attack α.  

This angle ranges from 0º to 180º, whenever 
the rocket’s velocity opposes that of the flow 
and follow the same direction respectively. 

Variations in the angle of attack translate into 
different fluid pressure patterns around an 
object as the flow’s path is altered, and 
therefore, drag and lift forces as well.  

Calculations may require a correction in the 
angle of attack  to maintain values absolute: 

Rocket stability  

Similar to an object’s CG, the individual 
aerodynamic or hydrodynamic forces may be 
combined into a single force acting on the 
centre of pressure (CP ). This point is rarely 
located where the CG is, so aerodynamic 
forces will induce a torque around the rocket’s 
pivot point. Integrating the pressure over the 
surface area of an object will determine the 
position of this point. An approximation to 
calculate the CP’s location is presented in 
Appendix A. 

This pitching moment is mostly exerted by the 
aerodynamic forces perpendicular to the 
rocket’s centreline, otherwise identified as the 
normal forces, greater at angles attack nearer to 

. Stable rockets tend to fly at minimum 
angles of attack opposing the flow, as 
otherwise they would be accelerating towards 
undesirable directions. Aerodynamic forces 
acting on the CP of a rocket flying at an angle 
of attack will produce a pitch so that the CG is 
always in front of the CP with respect to the 
flow. Therefore, if the CP of a rocket is above 

Re α′ 

90∘

7

α′ = {α  if 0∘ < α ≤ 90∘

180 − α  if 90∘ < α ≤ 180∘M = vo

c
(13)

Fig. 11 - Angle fo attack relative to the flow.

Fig. 12 - Variation of pressure with angle of attack.

(14)

Fig. 13 - Torque exerted around the rocket’s CG 
by the aerodynamic forces acting on the CP.



or before its CG, the rocket is naturally 
unstable, as at the aerodynamic forces will tilt 
the rocket to a position where the thrust is 
acceleration the rocket in a undesired direction, 
and perhaps, lead to a loss of control and make 
it spin uncontrollably, as pictured in fig. 14. 
However, if the CP is brought below or behind 
the CG by adding some fins at the base of the 
rocket, increasing the pressure at their location, 
for example, the corrective pitching moment 
produced by the aerodynamic forces will keep 
the rocket facing against the flow and fly in the 
desired orientation as depicted by fig. 15. 

Note that the torque is proportional to the 
distance between the pivot point and wherever 
the force is applied, that is, the CG and CP 

respectively. Thus, the farther this two points 
are located from each other, the greater the 
pitching moment. 

Axial Coefficient 

The axial drag  is the component of the 
aerodynamic forces tangential to the rocket’s 
centreline, for which eq. (5) may be used 
interchangeably by replacing the drag 
coefficient with the axial drag coefficient , 
expressed as the combination of the friction 
drag , body , base  and fin  

pressure coefficients at an angle of attack .  

The approximation of the Ca value at various 
angles of attack requires its calculation at 
angles of attack of 0º and 180º as estimated by 
ref. [6] (Jorgensen, 1973). This increases 
reliability since the coefficient of the closest 
angle is used, such that: 

Friction drag coefficient 

The friction coefficient is the contribution to 
the axial drag coefficient due to friction drag. 
Methods for estimating its value under laminar 
and turbulent flow are determined by the 
different scopes of Reynolds number. These 
ranges are somewhat denoted by the rocket’s 
critical Reynolds number , the point at 
which the flow becomes turbulent, defined by 
the approximate roughness height  of its 

A

CA

CAf CAp CAb CAn

i

Rec

Rs
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CA =
CAα=0∘ ⋅ cos(α′ )2  if 0∘ < α ≤ 90∘

CAα=180∘ ⋅ cos(α′ )2  if 90∘ < α ≤ 180∘

CAα=i(CAf + CAp + CAb + CAn)α=i

(13)

(15)

(16)

Fig. 14 - Pitching moment due to aerodynamic 
forces on a naturally unstable rocket.

Fig. 15 - Corrective pitching moment due to 
aerodynamic forces on a stable rocket.



surface and the length of the rocket in ref. [7] 
(Barrowman, 1967): 

Some approximate roughness heights for 
different surfaces retrieved from ref. [8] are 
listed hereunder: 

From theoretical and experimental data 
presented in ref. [8] (Cheeseman, 1976) the 
following piecewise function may be retrieved 
to calculate the skin friction coefficient : 

Where the coefficient at  below , for 
which the experimental formulae are not 
applicable, typically encountered at velocities 
below , is assumed to be constant. The 
critical Reynolds number defines the point at 
which the skin friction coefficient can be 
considered independent of .  

Someone would expect more friction drag on 
turbulent flow; however, higher Reynolds 
numbers translate into lower ratios of viscous 
to inertial forces. Higher velocities, to which 
greater Reynolds numbers are mostly related, 
will increase inertial forces while decreasing 
frictional forces. 

Compressibility corrections to account for the 
deviation of the thermodynamic properties of a 
fluid and its modified density as an object 
moves faster through it may be applied. 

At subsonic speeds the corrected coefficient  

is independent from . In supersonic flow 
however, the coefficient for Reynolds numbers 
lower and higher than critical, turbulent and 
roughness limited layers respectively, may be 
corrected differently.  

The optimized coefficient can then be used to 
calculate the resultant friction coefficient by 
scaling it to the appropriate wetted area 
common to a reference area. The body and fins 
wetted area are corrected for its cylindrical 

Type of surface Height (µm)

Average glass 0.1

Finished and polished surface 0.5

Optimum paint-sprayed surface 5

Planed wooden boards 15

Paint in aircraft mass production 20

Dip-galvanized metal surface 150

Incorrectly sprayed aircraft paint 200

Raw wooden boards 500

Cf

Re 104

1 m /s

Re

C′ f

Re

9

Rec = 51 ( Rs

l )
−1.039

Cf =

1.48 ⋅ 10−2  if Re < 104

1
(1.5 ln(Re) − 5.6)2  if 104 ≤ Re ≤ Rec

0.032( Rs
L )0.2  if Rec < Re

C′ f =

Cf (1 − 0.1M2)  if M < 1
Cf

(1 + 0.15M 2)0.58  if 1 ≤ M and Re ≤ Rec

Cf

1 + 0.18M 2  if 1 ≤ M and Rec ≤ Re

(18)

(16)

(19)

(17)

Tab. 1 - Approximate roughness 
heights for common surfaces.

Fig. 16 - Skin friction coefficient of turbulent, 
laminar and roughness-limited boundary layers.



geometry and finite thickness respectively. 
Interactions with the fluid will be higher with 
greater wetted areas, deductively proportional 
to the friction drag coefficient : 

Where  is the fineness ratio of the rocket,  
the thickness and  the mean aerodynamic 
chord length of the fins. 

Base pressure drag coefficient 

The base pressure coefficient  accounts for 
the low pressure area generated at the base of 
the rocket, where the body radius declines 
briskly. The coefficient may be estimated using 
the following empirical formula from ref. [9] 
(Moore, 1994), obtained from the experimental 
data referenced in ref. [10] (Moore, 1992): 

The coefficient is at its peak throughout the 
transonic range because of the shock waves 
formation and general flow instabilities. 

The base pressure coefficient can then be 
scaled to a common reference area to obtain 
the base drag contribution . 

Where the amended base area  accounts for 
the disruption from the exhaust of a motor into 
the area. An approximation is achieved by 
subtracting the area of the thrusting propulsive 
systems  from the base area . Therefore, if 
the base is the same size as the motor itself, 
there will be no base drag. In the contrary, if 
the base area is significantly greater than the 
motor area, the base drag is similar to 
whenever the rocket is coasting. 

Tip pressure drag coefficient 

The pressure drag coefficients of streamlined 
rocket tips have been measured by ref. [11] 
(Hoerner, 1965) and are presented by the 
following figure:  

The slightest rounding at the connection 
between the tip and the body, defined by the 

CAf

fB t
ζ

Cb

CAb

A′ b

Am Ab
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CAf = C′ f

(1 + 1
2 fB

) ⋅ Awb

Ar

+
(1 + 2t

ζ ) ⋅ Awf

Ar

Cb = {0.12 + 0.13M2  if M < 1
0.25 / M  if 1 ≤ M

(20)

CAb = A′ b

Ar
Cb

A′ b = Ab − Am

CtM=1 = sin(ε)

(21)

(22)

(23)

Fig. 17 - Empirical data of the base pressure drag 
coefficient variation with the Mach number. Fig. 18 - Experimental data of the pressure 

drag of various rocket tip geometries.



joint angle , reduces flow separation, and 
thus, the drag coefficient considerably. 
Appreciable pressure drag is encountered if the 
transition is not smooth due to flow separation.  

The pressure drag  of a rocket tip may 
therefore be calculated with the piecewise 
function obtained from the additional 
experimental data discussed in ref. [12] 
(Convict & Faro, 1961): 

Where  and  are computed to interpolate the 
drag coefficient between the low subsonic and 
transonic flow and its derivatives, following 
the constraints: 

The value for the specific heat ratio of air is 
introduced by , and  is the angle 
between the conical body and the body 
centreline: 

Where lower fineness or diameter  to length  
ratios translate into higher pressure drag forces. 

For blunt cylinders or rocket tips, which may 
be accounted for at angles of attack over  
where the rocket’s aft is facing against the 
flow, the pressure drag coefficient may be 
considered the same as the stagnation pressure, 

or the pressure at areas perpendicular to the 
flow, defined by ref. [11] (Hoerner, 1961) as: 

The coefficient  should then be scaled to the 
tip’s front area , common to the rocket’s 
reference area, to get the resultant contribution 

 to the axial drag coefficient: 

Transition and boattail pressure drag 

The pressure drag of transitional rocket 

components, like the one identified in fig. 19, 
is assumed to be the same as that of a tip, 
scaled to the difference in area between the 
fore  and aft  ends of the transition. 

The pressure drag coefficient of a boattail, 
like the one in fig. 19, is deductively related to 
the base drag and the length to height ratio , 
calculated from the boattail’s length  and fore 

 and aft  diameters. Data from ref. [7]  

(Barrowman, 1967) suggests that: 

ϕ
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a b

γ = 1.4 ε

d l

90∘

CT

At

Ct

Cj

Ajf Aja

Cv

λ
lv

dvf dva
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CTM=0 = 0.8 ⋅ sin2(ϕ)

∂CT

∂M M=1 =
4 − 2CtM=1

γ + 1

CT =

a ⋅ Mb + CTM=0  if M < 1
CTM=1.3 − CTM=1

0.3 (M − 1) + CTM=1  if 1 ≤ M ≤ 1.3

2.1 s i n2(ε) + 0.5 sin(ε)
β  if 1.3 < M

tan(ε) = d
2 l

(24)

CTM=1 = sin(ε)

(25)

(26)

(27)

(28)

(30)

Cq = 0.85 ⋅
1 + M2

4 + M 4
40  if M < 1

1.84 − 0.76
M2 + 0.166

M4 + 0.035
M6  if 1 ≤ M

(29)

Cj =
� Ajf − Aja �

Ar
CT

Ct = At

Ar
CT

(31)

Cv = Ab

Ar
Cb ⋅

1  if λ < 1
3 − λ

2  if 1 ≤ λ ≤ 3
0  if 3 < λ

λ = lv

dvf − dva
(32)

(33)



Body pressure drag coefficient 

The total pressure drag coefficient may then be 
calculated by adding the tip , transition  

and boattail  pressure drag coefficients. 

Fin pressure drag coefficient 

The fin pressure drag is highly dependent on its 
profile geometry, typically classified as 
rectangular , tapered , or rounded .  

The coefficient  may be obtained by adding 
the pressure drag of the leading  and trailing  

 edges, scaled up to the fin frontal area  

common to the reference area, where pressure 
drag is encountered. 

From experimentation, empirical formulae may 
be derived to calculate the pressure drag of 
different geometry leading and trailing edges, 
as approached in ref. [7] (Barrowman, 1967). 

Where  is the average leading edge angle, 
identified in fig. 24. The pressure drag is 
higher for lower values of , as they translate 
into sharper transitions, and therefore, 
increased flow separation. The pressure drag is 
greater at transonic velocities, where shock 
waves form due to the compression of the fluid 
and create chaotic flow which does not 
stabilize until supersonic flow is established. 

Normal Coefficient 

The normal force  is the component of the 
aerodynamic forces perpendicular to the  
rocket’s centreline and may be calculated using 
eq. (7) by substituting the lift coefficient for the 
normal coefficient , defined as the 
combination of the lift exerted by symmetrical 
body components  and the fins . 

Ct Cj

Cv

⊓ ∧ ∩

Cn

Cnl

Cnt Anf

μ

μ

N

CN

CNa + CNl CNn

12

CAn =
Anf

Ar
(Cnl + Cnt)

Cn∩l =
(1 − M2)−0.417 − 1  if M < 0.9
1 − 1.785(M − 0.9)  if 0.9 ≤ M ≤ 1
1.214 − 0.502

M 2 + 0.1095
M4  if 1 < M

Cnl =
Cs  for ⊓
Cn∩l ⋅ cos2μ  for ∧
Cn∩l  for ∩

Cnt =
Cb  for ⊓
0  for ∧
Cb
2  for ∩

CN = CNa + CNl + CNn

Fig. 20 - Typical rectangular, 
tapered and rounded fin geometries.

CAp = Ct + Cj + Cv (34)

Fig. 19 - Rocket with transitional 
components and a boattail.
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Symmetrical body components normal 
coefficient 

The normal force  at a point  for an axially 
symmetric body may be computed with the 
cross sectional area  of the body at position 
and the local downwash . 

According to ref. [7] (Barrowman, 1967) based 
on the potential flow theory and with reliable 
results accurate to about 6%: 

Substituting  values into eq. (7) and integrating 
the cross sectional area derivative over the 
component length the normal coefficient  

can be obtained: 

These equations demonstrate that the normal 
force coefficient will depend on the difference 
of the of cross sectional area at the aft and fore 
ends. However, the lift due to cylindrical 
bodies with constant cross sectional areas, even 
at low angles of attack, noted by experiments 
in ref. [13] (Vallini, 2015) counterclaims this 
approach. Thus a correction term is added 
accounting for body lift ref. [6] (Jorgensen, 
1973): 

Where  is the crossflow drag coefficient for a 
section of an undefined length cylinder placed 
normal to an air stream, and  is the crossflow 
drag proportionality factor, denoted by the ratio 
of the crossflow drag coefficient for a finite  
length cylinder to that of a infinite length 
cylinder. The variation of  is well 
documented by fig. 21: 

However, at low subsonic speeds below 
, the Reynolds number may have a 

significant effect on the coefficient, for which 
additional experimental data was also recorded 
and is shown in fig. 22:  

The following regression line can be derived 
from the experimental data, such that: 
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Fig. 21 - Variation of the crossflow 
drag coefficient with Mach number.

Fig. 22 - Variation of the crossflow 
drag coefficient with Reynolds number.
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C′ d =

1.2  if Re < 105.25
−2.575 ⋅ 10−6

⋅ (Re − 105.25) + 1.2
 if 105.25 ≤ Re ≤ 105.75

1
6 l n (Re) − 2  if 105.75 < Re (44)



The experimental variation of  with the length  
 to diameter  ratio of a circular cylinder is 

presented by the following figure: 

From which the following equation may be 
obtained to estimate its value: 

Fins normal coefficient 

The normal force coefficient derivative  for 
one fin at subsonic velocities may be 
calculated using a semi-empirical approach 
introduced in ref. [7] (Barrowman, 1967) and 
the thin airfoil theory of potential flow [ref. 14] 
(Gaunaa, 2006). 

Where  is the mid chord sweep angle, as seen 
in fig. 24, and  is the corrective value 
accounting for the sweep of the fin given by: 

By substitution, the coefficient becomes: 
Otherwise, the normal force coefficient of a fin 
at supersonic velocities can be calculated 
through a third-order series expansion used in 
ref. [15] (Barrowman, 1966) that defines the 
local pressure coefficient . 
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Fig. 24 - Average leading edge angle 
and mid chord sweep angle of a fin. 
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Cd =

C′ d  if M < 0.5
20.9M + 0.2  if 0.5 ≤ M < 1
−0.1 ln(0.1(M − 1)) + 1.1  if 1 ≤ M ≤ 5
1.2  if M < 5

Fig. 23 - Variation of the crossflow drag 
proportionality with length to diameter ratio.
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The lift force  of a fin is given by: 

Which may the be substituted into eq. (7) to 
obtain the normal force coefficient of a fin: 

Altogether, the normal force coefficient  for 

a number of fins  is given by the sum of their 
individual force coefficient at an angle of 
attack , depicted by fig. 24. 

Where  is a correction term for interference 
between fins, suggested by ref. [16] (United 
States, 1968): 

Simulation 

The designed flight simulation software was 
built on Swift. The code developed may be 
found in Appendix C, and its architecture is 
further explained in Appendix B. Comparisons 
between simulated and experimental flight data 
were made to validate the reliability of the 
software, Apex Dream. These include a simple 
model rocket and an advanced or thrust 
vectored controlled model rocket. The designs 
of the rockets from the experiments were 
introduced like a controlled variable into the 
flight simulation software, including the 
alternative software OpenRocket and RockSim 
for further comparison. Flight profiles are 
outlined by the following figures: 
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Fig. 24 - Normal force of fins and 
their individual angle of attack.

Ξ =

1  for 1 ≤ y ≤ 4
0.984  for y = 5
0.913  for y = 6
0.854  for y = 7
0.810  for y = 8
0.750  for 8 ≤ y

(54)

(55)

(56)

(57)

Fig. 25 - Experimental and simulated flight 
comparison of a simple model rocket.

Fig. 26 - Experimental and simulated flight 
comparison of an advanced model rocket.



The descent phase of a rocket flight is not 
developed, and thus, the simulated data is 
interrupted at apogee, the highest altitude. 
Moreover, fig. 26 only shows the simulated 
data by Apex Dream as it is the only simulation 
software compatible with the thrust vector 
control system featured by the experimental 
advanced model rocket. 

All simulations appear to be notably optimistic,  
predicting slightly higher apogees, from the 
experimental flights. Errors are presented by 
the following tables: 

Conclusion 

Flight simulations are key to an optimized 
rocket design and risk minimization; however, 
there is no available flight simulation software 
compatible with commonly featured systems in 
advanced model rocketry. Therefore, the forces 
acting on a rocket during its flight were deeply 
studied to develop an advance model rocket 
flight simulation software. 

This work not only provides detailed estimates 
for aerodynamic properties, for which there is 
no defined mathematical models, but also 
introduces a powerful tool that may be used by 
any advanced model rocketeer. Results are a bit 
optimistic, probably due to: 

Assumptions were made in the calculation of 
aerodynamic properties. Estimations for the 
coefficients of a component with a determined shape 
were applied to a more varied range of shapes based 
on their similarity. While these assumptions had a 
solid justification and demonstrated not to be very 
off, given the error of the simulation, they may be 
corrected through more extense calculation that 
adjust to a greater variation of components and their 
forms.

16

Tab. 2 - Errors for comparison between experimental 
and simulated data of a simple model rocket.

Tab. 3 - Errors for comparison between experimental 
and simulated data of an advanced model rocket.

Apogee (m) Error (%)

Experimental 97.12 - %

Simulated  
(Apex Dream)

113.63 17%

Apogee (m) Error (%)

Experimental 118.53 - %

OpenRocket 134.08 13%

RockSim 143.02 21%

Simulated  
(Apex Dream)

138.10 17%

Fig. 27 - Apex Dream design interface.

Fig. 28 - Apex Dream simulation interface.



Overall, the flight simulation software is 
reliable enough with errors below 20% and 
similar in accuracy to other popular flight 
simulation software, which also proves the 
reliability of the referenced sources. Thus, may 
be used to optimise the rocket design. 
Approximations for aerodynamic forces may 

be further develop by accounting for roll, 
additional sources of drag which were not 
considered in this work due to their small 
contribution to the resultant drag and lift of a 
rocket, or even by performing more wind 
tunnels experimentation to retrieve more 
accurate formulae. Despite the effectiveness of 
Apex Dream, the software may still be utilized 
to tune the systems of thrust vectored 
controlled model rockets, as these are not 
dependant on the flight profile, but rather the 
variation of aerodynamic properties. 

In conclusion, this investigation answers the 
initial research question to a great extent, yet, 
more investigation could and will be made to 
improve the reliability of the simulation 
software and include more features. This work 
brought me a step closer to the flight of the 
advanced model rocket I am currently 
developing and only dreamt of to this date. 
Hopefully, this work contributes to the model 
rocketry community by redefining the 
boundaries of available flight simulation 
software and expanding possibilities, allowing 
to design reliably advanced model rockets 
featuring thrust vector control, tune their 
systems, and estimate their aerodynamic 
properties and flightpaths. 

Assumptions were made in the calculation of 
aerodynamic properties. Estimations for the 
coefficients of a component with a determined shape 
were applied to a more varied range of shapes based 
on their similarity. While these assumptions had a 
solid justification and demonstrated not to be very 
off, given the error of the simulation, they may be 
corrected through more extense calculation that 
adjust to a greater variation of components and their 
forms.

Wind disturbances were not taken into account, 
which may have a considerable effect on real rocket 
flight and therefore the experimental data as well, 
probably contributing to the error. Wind disturbances 
may be coded and accounted by flow calculations. 
Perhaps, the characteristics of such disturbances 
could be manually introduced by the user.

Empirical formulae was derived from experimental 
data under limited conditions, including different 
ranges of Mach and Reynolds numbers. The 
equations extrapolated observed relations to greater 
ranges which may have led to little inaccuracies in 
calculation, again, contributing to the small error in 
the simulation.

Sources were carefully selected based on their 
reliability. Note that the bibliography only makes 
reference to this selection of sources. The models that 
best predicted the aerodynamic properties in 
comparison to wind tunnel data and other simulation 
software, line OpenRocket in ref. [17] (Niskanen, 
2013), were used. References include a primary and 
secondary sources, that present experimental data and 
empirical formulae. Many come from prestigious 
organizations or individuals, such as NASA.

Introduced rocket characteristics may have been 
slightly off due to inaccurate measurement, which 
would have led to miscalculations of the rocket’s 
aerodynamic properties and therefore greater errors. 
This could by retrieving more accurate data, perhaps 
obtained with more precise tools.

Aerodynamic phenomenon  with almost negligible 
effects on ideal conditions, such as the roll of a rocket 
exerted by the aerodynamic forces, were not 
approximated nor taken into account in any way. 
Future version of the simulation software will include 
these and hopefully give more accurate results, for 
which additional research will have to be done.
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Tab. 4 - Evaluation and discussion



Appendix A 

Center of pressure 

The document cited in ref. [18] (Barrowman & 
Barrowman, 1966) presents algebraic methods 
to determine the location of the CP: 

The coefficient of the denominator and each 
adding term, corresponding to the rocket tip, 
any transition and the fins respectively, can be 
calculated from: 

Where the variables: 

 = tip length 
 = tip base diameter 

 = transition fore diameter 

 = transition aft diameter 

 = transition length 

 = distance from tip to transition fore 

 = fin root chord length 

 = fin tip chord length 

 = fin mid chord length  

 = fin height 
 = base radius 
 = distance from root to tip leading edge 
 = distance from tip to fin root 

 = number of fins 

lt
dtb

djf

dja

lj
Xp

lnr

lnt

lnm

hn

rb

Xr

Xb

y
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Appendix B 

Simulation architecture 

The simulation was built on Swift. Simple 
individual characteristics of a rocket, limited to 
the range of variations in from, are introduced 
by the user. Additional characteristics, like the 
chord length of a fin or the joint angle of a 
rocket tip, are calculated automatically by the 
simulation software from the simpler inputted 
data. Designing a rocket in Apex Dream is 
made easier because of this, however, it may 
also lead to some inaccuracies. Values for the 
conditions are also introduced, including the 
angle of the wind and its velocity. Note 
however that the simulation software does not 
account for disturbances in wind yet. The user 
also sets up the simulation by defining the 
running frequency, used to calculate the period 
between each set of calculations for an instance 
in the flight. 

A loop runs from liftoff to recovery; however, 
aerodynamic properties for the descent phase 
of the rocket flight weren’t appropriately coded 
as of now, which makes the simulation only 
valuable up to apogee, the highest point of a 
rocket flightpath. For every instance of the 
loop the simulation first codes all flow 
properties, including the angle of attack, 
derived from the values from the previous 
instance. Then, all forces are calculated, 
including weight, thrust and aerodynamic 
forces. Model rocket often fly at low altitudes 
were the difference in weight is almost 
negligible, but it is still accurately calculated 
based on the rocket’s altitude using basic 
gravitational equations. The thrust is computed 
by linearly interpolating the different points of 

the data base of a determined rocket motor. The 
direction of the thrust is also accounted for 
depending on the rocket’s orientation and the 
thrust vectoring, which differs this simulation 
software from others. Then, all aerodynamic 
properties are calculated for every component 
of the rocket with the equations presented by 
this work, later used with the drag and lift 
equations.  

All this forces are stored as two-dimensional 
vectors, although the simulation software is 
soon expected to expand to the three 
d imens ions . This however, may not 
compromise the effect iveness of the 
s imula t ions . The l inear and angular 
accelerations of the rocket are then calculated 
with the force vectors using force and torque 
equat ions. With previous and actual 
acceleration new velocities and positions can 
be computed. If the rocket has not landed the 
loop runs again. 
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Appendix C 

Simulation code 

import Foundation 
import simd 

func degreesToRadians(_ degrees: Double) -> Double { 
    return degrees * .pi / 180 
} 

func radiansToDegrees(_ radians: Double) -> Double { 
    return radians * 180 / .pi 
} 

struct Motor { 
    var id = UUID() 
    var name = String() 
    var manufacturer = String() 
    var data = [Double:Double]() 
    var totalMass = Double() 
    var propellantMass = Double() 
} 

enum FinType { 
    case slanted, tapered, rectangular, rounded 
} 

struct Rocket { 
    var id = UUID() 
    var name = "Custom Rocket" 
    var manufacturer: String = "User" 
     
    var mass = 0.0 
    var massCentre = 0.0 
    var pressureCentre = 0.0 
     
    var length = 0.0 
    var diameter = 0.0 
     
    var roughnessHeight = 0.00 

    var jointAngle = 0.0 
     
    var tipChord = 0.0 
    var rootChord = 0.0 
    var height = 0.0 
    var thickness = 0.0 
    var finsNumber = 0.0 
    var tipSweepAngle = degreesToRadians(0.0) 
    var midSweepAngle = degreesToRadians(0.0) 
    var finType = FinType.slanted 
     
    var volume: Double { 
        return .pi * pow((diameter / 2), 2) * length 
    } 
    var coneRatio: Double { 
        return atan(((diameter / 2) / length) * 180 / Double.pi) 
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    } 
    var finArea: Double { 
        return (tipChord + rootChord) / 2 * height 
    } 
    var averageChord: Double { 
        return (tipChord + rootChord) / 2 
    } 
    var wettedBodyArea: Double { 
        return .pi * length * diameter 
    } 
    var wettedFinsArea: Double { 
        return finArea * 2 * Double(finsNumber) 
    } 
    var frontFinArea: Double { 
        return thickness * length * Double(finsNumber) 
    } 
    var baseArea: Double { 
        return .pi * pow(diameter / 2, 2) 
    } 
    var referenceArea: Double { 
        return .pi * pow(diameter / 2, 2) 
    } 
    var planformArea: Double { 
        return diameter * length 
    } 
    var planformCentroid: Double { 
        return length / 2 + 0.05 * length 
    } 
    var rotationalInertia: Double { 
        return (mass * pow(diameter / 2, 2)) / 4 + (mass * pow(length / 2, 2)) / 12 
    } 
     
    var motor: Motor = Motor(id: UUID(), 
                             name: "Custom Motor", 
                             manufacturer: "User", 
                             data: [0.000: 0.000], 
                             totalMass: 0.0163, 
                             propellantMass: 0.003) 
} 

struct Conditions { 
    var windSpeed = 0.0 
    var windOrientation = simd_double2(x: 0, y: 0) 
     
    var wind: simd_double2 { 
        return windSpeed * simd_normalize(windOrientation) 
    } 
} 

struct Settings { 
    var frequency = 50.0 
     
    var period: Double { 
        return 1 / self.frequency 
    } 
} 

     
struct FlightData { 
    var id = UUID() 
    var title = "Flight Simulation" 
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    var date = Date() 
     
    var time = [Double]() 
     
    var rocket: Rocket 
    var conditions: Conditions 
     
    var position = [simd_double2]() 
    var orientation = [simd_double2]() 
     
    var velocity = [simd_double2]() 
    var angularVelocity = [Double]() 
    var acceleration = [simd_double2]() 
    var angularAcceleration = [Double]() 
     
    var axialDrag = [simd_double2]() 
    var axialDragCoefficient = [Double]() 
     
    var frictionDragCoefficient = [Double]() 
    var baseDragCoefficient = [Double]() 
    var pressureDragCoefficient = [Double]() 
     
    var normalForce = [simd_double2]() 
    var normalForceCoefficient = [Double]() 
     
    var pitchMomentCoefficient = [Double]() 
     
    var thrust = [simd_double2]() 
    var weight = [simd_double2]() 
     
    var attackAngle = [Double]() 
    var reynoldsNumber = [Double]() 
    var pressureCentre = [Double]() 
} 

func flightSim(rocket: Rocket, conditions: Conditions, settings: Settings) -> FlightData { 
    var data = FlightData(rocket: rocket, conditions: conditions) 
     
    var running = true 
    var loop = 0 
     
    while running { 
        let time = Double(loop) * settings.period 
        data.time.append(time) 
         
        guard loop > 0 else { 
            data.position.append(simd_double2()) 
            data.orientation.append(simd_double2(x: 0, y: 1)) 
            data.velocity.append(simd_double2()) 
            data.angularVelocity.append(Double()) 
            data.acceleration.append(simd_double2()) 
            data.angularAcceleration.append(Double()) 
            data.axialDrag.append(simd_double2()) 
            data.axialDragCoefficient.append(Double()) 
            data.frictionDragCoefficient.append(Double()) 
            data.baseDragCoefficient.append(Double()) 
            data.baseDragCoefficient.append(Double()) 
            data.pressureDragCoefficient.append(Double()) 
            data.normalForce.append(simd_double2()) 
            data.normalForceCoefficient.append(Double()) 
            data.pitchMomentCoefficient.append(Double()) 
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            data.thrust.append(simd_double2()) 
            data.weight.append(simd_double2()) 
            data.attackAngle.append(Double()) 
            data.reynoldsNumber.append(Double()) 
            data.pressureCentre.append(Double()) 
             
            loop += 1 
            continue 
        } 
         
        let airDensity = 1.225 
        let airViscosity = 1.81 * pow(10, Double(-5)) 
        let soundSpeed = 340.0 
         
        let flow = -data.velocity[loop - 1] + data.conditions.wind 
         
        let machNumber = simd_length(data.velocity[loop - 1]) / soundSpeed 
         
        let reynoldsNumber = airDensity * simd_length(flow) * rocket.length / airViscosity 
        let criticalReynoldsNumber = 51 * pow(rocket.roughnessHeight / rocket.length, -1.039) 
        data.reynoldsNumber.append(reynoldsNumber) 
         
        //check 
        var attackAngle = acos(simd_dot(data.orientation[loop - 1], flow) / simd_length(data.orientation[loop - 1] 
* simd_length(flow))) 
        data.attackAngle.append(attackAngle) 
         
        var correctedAttackAngle: Double { 
            if abs(attackAngle) < 90{ 
                return abs(attackAngle) 
            } else { 
                return 180 - abs(attackAngle) 
            } 
        } 
         
        let keyTimes = Array(rocket.motor.data.keys).sorted(by: <) 
         
        let previousTime = keyTimes.lastIndex(where: {$0 <= time}) 
         
        var thrust: simd_double2 { 
            if previousTime != (keyTimes.count - 1) { 
                let lastKey = simd_double2(x: keyTimes[previousTime ?? 0], 
                                           y: rocket.motor.data[keyTimes[previousTime ?? 0]] ?? 0.0) 
                let nextKey = simd_double2(x: keyTimes[(previousTime ?? 0) + 1], 
                                           y: rocket.motor.data[keyTimes[(previousTime ?? 0) + 1]] ?? 0.0) 
                 
                let slope = (nextKey.y - lastKey.y) / (nextKey.x - lastKey.x) 
                 
                return (slope * (time - lastKey.x) + lastKey.y) * simd_normalize(data.orientation[loop - 1]) 
            } else { return simd_double2() } 
        } 
         
        data.thrust.append(thrust) 
         
        var motorMass: Double { 
            if time > keyTimes[keyTimes.count - 1] { 
                return rocket.motor.totalMass - rocket.motor.propellantMass 
            } else { 
                return ((rocket.motor.totalMass - rocket.motor.propellantMass) - rocket.motor.totalMass) / 
(keyTimes[0] - keyTimes[keyTimes.count - 1]) * time + rocket.motor.totalMass 
            } 
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        } 
         
        let totalMass = rocket.mass + motorMass 
         
        var weight: simd_double2 { 
            if data.position[loop - 1].y > 0 { 
                 
                let earthMass = 5.972 * pow(10, Double(24)) 
                let earthRadius = 6.371 * pow(10, Double(6)) 
                let G = 6.67 * pow(10, Double(-11)) 
                 
                let g = G * earthMass / pow(earthRadius + Double(data.position[loop - 1].y), 2) 
                 
                return (totalMass * Double(g)) * simd_normalize(simd_double2(x: 0, y: -1)) 
            } else { return simd_double2() } 
        } 
         
        data.weight.append(weight) 
         
        var frictionCoefficient: Double { 
            var approximation: Double { 
                if reynoldsNumber < pow(10, 4) { 
                    return 1.48 * pow(10, -2) 
                } else if reynoldsNumber > pow(10, 4) && reynoldsNumber < criticalReynoldsNumber { 
                    return 1 / pow(1.5 * log(reynoldsNumber) - 5.6, 2) 
                } else { 
                    return 0.032 * pow(rocket.roughnessHeight / rocket.length, 0.2) 
                } 
            } 
            if simd_length(flow) < soundSpeed { 
                return approximation * (1 - 0.1 * pow(machNumber, 2)) 
            } else { 
                return approximation / pow(1 + 0.15 * pow(machNumber, 2), 0.58) 
            } 
        } 
         
        var frictionDragCoefficient: Double { 
            if rocket.finsNumber > 0 { 
                return (frictionCoefficient * (((1 + (1 / (2 * rocket.length / rocket.diameter))) * 
rocket.wettedBodyArea + (1 + (2 * rocket.thickness) / rocket.averageChord) * rocket.wettedFinsArea) / 
rocket.baseArea)) * pow(abs(cos(attackAngle)), 2) 
            } else { 
                return (frictionCoefficient * (((1 + (1 / (2 * rocket.length / rocket.diameter))) * 
rocket.wettedBodyArea) / rocket.referenceArea)) * pow(abs(cos(attackAngle)), 2) 
            } 
        } 
         
        data.frictionDragCoefficient.append(frictionCoefficient) 
         
        var baseDragCoefficient: Double { 
            if machNumber < 1 { 
                return ((rocket.baseArea / rocket.referenceArea) * (0.12 + 0.13 * pow(machNumber, 2))) * 
pow(abs(cos(attackAngle)), 2) 
            } else { 
                return ((rocket.baseArea / rocket.referenceArea) * 0.25 / machNumber) * pow(abs(cos(attackAngle)), 
2) 
            } 
        } 
         
        data.baseDragCoefficient.append(baseDragCoefficient) 
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        var leadingFinPressure: Double { 
            switch rocket.finType { 
            case .rectangular: 
                var stagnationPressure: Double { 
                    if machNumber < 1 { 
                        return 1 + (pow(machNumber, 2) / 4) + (pow(machNumber, 4) / 40) 
                    } else { 
                        return 1.84 - (0.76 / pow(machNumber, 2)) + (0.166 / pow(machNumber, 4)) + (0.035 / 
pow(machNumber, 6)) 
                    } 
                } 
                return 0.85 * stagnationPressure 
            default: 
                var leadingPerpendicularFinPressure: Double { 
                    if machNumber < 0.9 { 
                        return pow(1 - pow(machNumber, 2), -0.417) - 1 
                    } else if machNumber > 0.9 && machNumber < 1 { 
                        return 1 - 1.785 * (machNumber - 0.9) 
                    } else { 
                        return 1.214 - (0.502 / pow(machNumber, 2)) + (0.1095 / pow(machNumber, 4)) 
                    } 
                } 
                switch rocket.finType { 
                case .slanted: 
                    return leadingPerpendicularFinPressure * pow(cos(rocket.tipSweepAngle * Double.pi / 180), 2) 
                default: 
                    return leadingPerpendicularFinPressure 
                } 
            } 
        } 
         
        //check 
        var trailingFinPressure: Double { 
            switch rocket.finType { 
            case .rectangular: 
                return baseDragCoefficient 
            case  .rounded: 
                return baseDragCoefficient / 2 
            default: 
                return 0 
            } 
        } 
         
        let finPressureCoefficient: Double = (rocket.frontFinArea / rocket.referenceArea) * (leadingFinPressure + 
trailingFinPressure) * pow(abs(cos(attackAngle)), 2) 
         
        //check 
        var conePressureCoefficient: Double { 
            if machNumber <= 1 { 
                let startPoint = 0.8 * pow(sin(rocket.jointAngle * Double.pi / 180), 2) 
                let startSlope = 0.0 
                let finishPoint = sin(rocket.coneRatio * Double.pi / 180) 
                let finishSlope = (4 / (1.4 + 1)) * (1 - 0.5 * finishPoint) 
                 
                return ((finishSlope - startSlope) / 2 * pow(machNumber, 2) + startPoint) * 
pow(abs(cos(attackAngle)), 2) 
            } else if machNumber > 1 && machNumber < 1.3 { 
                return 1 * pow(abs(cos(attackAngle)), 2) 
            } else { 
                return (2.1 * pow(sin(rocket.coneRatio * Double.pi / 180), 2) + 0.5 * (sin(rocket.coneRatio * 
Double.pi / 180) / sqrt(pow(machNumber, 2) - 1))) * pow(abs(cos(attackAngle)), 2) 
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            } 
        } 
         
        //boattail 

        let pressureDragCoefficient = conePressureCoefficient + finPressureCoefficient 
        data.pressureDragCoefficient.append(pressureDragCoefficient) 
         
        let axialDragCoefficient = pressureDragCoefficient + baseDragCoefficient + frictionDragCoefficient 
        data.axialDragCoefficient.append(axialDragCoefficient) 
         
        let axialDrag = (axialDragCoefficient * airDensity * pow(simd_length(data.velocity[loop - 1]), 2) * 
rocket.referenceArea / 2) * simd_normalize(-data.orientation[loop - 1]) 
        data.axialDrag.append(axialDrag) 
         
        let crossflowDragProportionalityFactor = 0.7 
        let crossflowDragCoefficient = 1.2 
         
        var bodyNormalForceCoefficient: Double { 
            if time > 0.25 { 
                return 2 * (rocket.baseArea / rocket.referenceArea) * sin(attackAngle) + 
crossflowDragProportionalityFactor * crossflowDragCoefficient * 1.1 * pow(sin(attackAngle), 2) 
            } else { 
                return 0 
            } 
        } 
         
        let specificHeatRatio = 1.4 
         
        var singleFinNormalForceCoefficient: Double { 
            if machNumber <= 0 { 
                return 0 
            } else if machNumber > 0 && machNumber < 1 { 
                return 2 * .pi * (pow(rocket.height, 2) / rocket.referenceArea) / (1 + sqrt(1 + pow((sqrt(1 - 
pow(machNumber, 2)) * pow(rocket.height, 2)) / (rocket.finArea * cos(rocket.midSweepAngle)), 2))) 
            } else { 
                let k1 = 2 / sqrt(abs(pow(machNumber, 2) - 1)) 
                let k2 = ((specificHeatRatio + 1) * pow(machNumber, 4) - 4 * pow(sqrt(abs(pow(machNumber, 2) - 
1)), 2)) / (4 * pow(sqrt(abs(pow(machNumber, 2) - 1)), 4)) 
                let k3 = ((specificHeatRatio + 1) * pow(machNumber, 8) + (2 * pow(specificHeatRatio, 2) - 7 * 
specificHeatRatio - 5) * pow(machNumber, 6) + 10 * (specificHeatRatio + 1) * pow(machNumber, 4) + 8) / (6 * 
pow(sqrt(abs(pow(machNumber, 2) - 1)), 7)) 
                 
                return (rocket.finArea / rocket.referenceArea) * (k1 * degreesToRadians(attackAngle) + k2 * 
degreesToRadians(attackAngle) + k3 * pow(degreesToRadians(attackAngle), 2)) 
            } 
        } 
         
        var finNormalForceCoefficient: Double { 
            var interference: Double { 
                switch rocket.finsNumber { 
                case 0: 
                    return 0 
                case 1...4: 
                    return 1.0 
                case 5: 
                    return 0.948 
                case 6: 
                    return 0.913 
                case 7: 
                    return 0.854 
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                case 8: 
                    return 0.810 
                default: 
                    return 0.750 
                } 
            } 
            let contribution = Double(rocket.finsNumber) / 2 
             
            return (singleFinNormalForceCoefficient * contribution * interference) * (1 + (360 / 
Double(rocket.finsNumber)) / (rocket.height + 360 / Double(rocket.finsNumber))) 
             
        } 
         
         
        let normalForceCoefficient = bodyNormalForceCoefficient + finNormalForceCoefficient 
        data.normalForceCoefficient.append(normalForceCoefficient) 
         
        var normal: simd_double2 { 
            let perpendicular = simd_normalize(simd_double2(x: data.orientation[loop - 1].y, y: 
-data.orientation[loop - 1].x)) 
             
            if acos(simd_dot(data.orientation[loop - 1], perpendicular) / simd_length(data.orientation[loop - 1] * 
simd_length(perpendicular))) < 90 { 
                return simd_normalize(simd_double2(x: data.orientation[loop - 1].y, y: -data.orientation[loop - 
1].x)) 
            } else { 
                return simd_normalize(simd_double2(x: -data.orientation[loop - 1].y, y: data.orientation[loop - 
1].x)) 
            } 
        } 
         
        let normalForce = (normalForceCoefficient * airDensity * pow(simd_length(data.velocity[loop - 1]), 2) * 
rocket.referenceArea / 2) * normal 
        data.axialDrag.append(axialDrag) 
         
        var pitchMomentCoefficient: Double { 
            if abs(attackAngle) < 90 { 
                return ((rocket.volume - rocket.baseArea * (rocket.length - rocket.massCentre)) / 
rocket.referenceArea * rocket.diameter) * sin(2 * correctedAttackAngle) * cos(correctedAttackAngle / 2) + 
crossflowDragProportionalityFactor * crossflowDragCoefficient * (rocket.planformArea / rocket.referenceArea) * 
((rocket.massCentre - rocket.planformCentroid) / rocket.diameter) * pow(sin(correctedAttackAngle), 2) 
            } else { 
                return -((rocket.volume - rocket.baseArea * rocket.massCentre) / rocket.referenceArea * 
rocket.diameter) * sin(2 * correctedAttackAngle) * cos(correctedAttackAngle / 2) + 
crossflowDragProportionalityFactor * crossflowDragCoefficient * (rocket.planformArea / rocket.referenceArea) * 
((rocket.massCentre - rocket.planformCentroid) / rocket.diameter) * pow(sin(correctedAttackAngle), 2) 
            } 
        } 
         
        data.pitchMomentCoefficient.append(pitchMomentCoefficient) 
         
        var pressureCentre: Double { 
            if normalForceCoefficient != 0 { 
                return ((rocket.massCentre / rocket.diameter) - (pitchMomentCoefficient / normalForceCoefficient)) 
* rocket.diameter 
            } else { 
                return rocket.massCentre 
            } 
        } 
        data.pressureCentre.append(pressureCentre) 
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        let acceleration = (weight + thrust + axialDrag + normalForce) / totalMass 
        data.acceleration.append(acceleration) 
         
        let angularAcceleration = simd_cross((rocket.pressureCentre - rocket.massCentre) * 
-simd_normalize(data.orientation[loop - 1]), normalForce).z / rocket.rotationalInertia 
        data.angularAcceleration.append(angularAcceleration) 
         
        let velocity = data.velocity[loop - 1] + (data.acceleration[loop - 1] + acceleration) / 2 * 
settings.period 
        data.velocity.append(velocity) 
         
        let angularVelocity = data.angularVelocity[loop - 1] + (data.angularAcceleration[loop - 1] + 
angularAcceleration) * settings.period 
        data.angularVelocity.append(angularVelocity) 
         
        let translation = ((data.velocity[loop - 1] + velocity) / 2) * settings.period 
        let position = data.position[loop - 1] + translation 
        data.position.append(position) 
         
        var rotation: Double { 
            if position.y > 0 { 
                return ((data.angularVelocity[loop - 1] + angularVelocity) / 2) * settings.period 
            } else { 
                return 0 
            } 
        } 
        let orientation = simd_normalize(simd_double2(x: data.orientation[loop - 1].x * cos(rotation) - 
data.orientation[loop - 1].y * sin(rotation), y: data.orientation[loop - 1].x * sin(rotation) + 
data.orientation[loop - 1].y * cos(rotation))) 
        data.orientation.append(orientation) 
         
        loop += 1 
         
        let limit = 500 
         
        if loop > limit { 
            running = false 
        } 
    } 
         
    return data 
} 

flightSim(rocket: Rocket(), conditions: Conditions(), settings: Settings()) 
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