

Developing an
Advanced Model
Rocket Flight
Simulation Software

Jorge Diaz Chao

Index

Introduction 1
 Research question 1
 Action plan 1
Gravitational force 2
 Weight 2
 Torque 2
Propulsion force 2
 Thrust 2
 Thrust vectoring 3
Aerodynamic forces 3
 Drag 3
 Lift 5
Aerodynamic properties 5
 Flow 6
 Mach and Reynolds numbers 6
 Angle of attack 7
 Rocket Stability 7
Axial Coefficient 8
 Friction drag coefficient 8
 Base pressure drag coefficient 10
 Tip pressure drag coefficient 10
 Transition and boattail pressure drag coefficient 11
 Body pressure drag coefficient 12
 Fin pressure drag coefficient 12
Normal Coefficient 12
 Symmetrical body components normal coefficient 13
 Fins normal coefficient 14
Simulation 15
Conclusion 16
Appendix A: center of pressure 18
Appendix B: simulation architecture 19
Appendix C: simulation code 20
Bibliography 29

Introduction

Model rocketry is an excellent approach to the intricacies and applications of physics that spark
curiosity and entertainment. It concerns insightful investigation, extensive experimentation and
creative design to maximize reliability, a key factor within rocket science. Therefore, simulation
software is frequently utilized to predict the flightpath of a rocket to minimize risks.

My interest in this topic originates from the development of an advanced model rocket, Apex Beta, I
have been working on for over a year already, which uses thrust vector to control its attitude, along
with a set of complex systems including a reaction wheel, avionics and a recovery system. An
adventurous project I embarked on inspired by my keen enthusiasm towards engineering and space
and the recent outstanding developments in aerospace technologies. However, no available
simulation software is compatible with such complex systems featured in advanced model rocketry,
which sets a perfect opportunity to deeply understand the physics of rockets and contribute to the
community by developing simulation software for advanced model rockets, namely Apex Dream.

Research question

Therefore, this work aims to explore the extent to which different forces influence the flightpath of
a rocket, accounting for thrust, weight and even aerodynamic forces, and more importantly, how to
estimate them. This sets a fun physics challenges due to the lack of documentation on the chaotic
nature of aerodynamics. Hence the research question:

How may the flightpath of a thrust vectored controlled model rocket be predicted through the
consideration of thrust, weight and the aerodynamic forces acting on it?

Action plan:

The development of flight simulation software requires a detailed understanding of aerodynamics
and reliable estimates. Therefore, the forces acting on a rocket will be first discuss at a theoretical
level, and later estimated with empirical formulae, retrieved from experimental data and theoretical
approaches. Finally, flight simulations will be compared to experimental data to verify the
reliability of the product. Extensive research has been made within this topic; however, there is no
defined mathematical model that describe the complex nature of aerodynamics. Thus, different
models were selected and combined based on their reliability and similarity to experimental data.

1

Gravitational force

Weight

Weight is the resultant force exerted by the
gravitational attraction on every component of
a rocket . When added together, the
gravitational forces may be viewed as a single
force originating from the centre of gravity
(CG), whose location varies with the weight
distribution of an object, as depicted by fig. 1.
Calculating a rocket’s gravitational force is
therefore a simple matter of determining its
total mass and CG.

Torque

Moreover, a rocket’s pivot point, around which
every rotation will occur, is denoted by its CG.
Any force applied to an object, if it does not
pass through this point, will not only cause a
translation, but also a rotational force referred
to as torque , which may be used to calculate
the angular acceleration . Note that rotational
forces do not interfere with linear forces.

Where is the rotational inertia, which is the
opposition exhibited by an object to the change
in angular velocity, just like mass defines the
resistance to linear acceleration. Its value is
expressed in , and may be calculated
for each component of a rocket through
standard formulae presented in ref. [1] (Nave,
2017) and combined to obtain the total moment
of inertia.

Propulsive force

Thrust

Thrust refers to the rocket’s propulsive force,
generated by exhausting gas or liquid in the
opposite direction to that of the desired
translation. Thus, the thrust of a motor is
directly proportional to the velocity of the
working fluid and the mass per time unit that
is exhausted.

τ
α

I

kg ⋅ m2

vt
·m

2

τ = d ⋅ Fsin(θ) (1)
τ = I ⋅ α

T = ·mvt + At(pt − po) (3)

(2)

Fig. 1 - Variation of a rocket’s CG
location with weight distribution.

Fig. 2 - Torque exerted around a rocket’s
pivot point due to unaligned forces.

Fig. 3 - Thrust of a rocket
and its components.

Were is the exhaust area, is the pressure of
the working fluid, and is the free stream
pressure.

The thrust of commercial model rocket motors
as a function of time have been measured in
static fire tests and are readily available online
at ref. [2] (Coker, 2022). This data may be used
by the flight simulations to calculate the thrust
at different times of the flight.

Thrust vectoring

Directing a rocket’s thrust to control its angular
velocity is known as thrust vectoring.
Nominally, the thrust vector is aligned with the
rocket’s centreline, and thus, exerts no torque.

Otherwise, a pitching moment may be created
by deflecting the thrust vector from the CG.

Aerodynamic Forces

In contact, fluids will exert a force on an object
whenever there is a relative motion between
both, and may be divided into drag , tangent
to the flow, and lift , perpendicular to the
flow. These forces are aerodynamic if the fluid
is a gas, or hydrodynamic if it is a liquid.

Drag

Pressure drag is the outcome of forcing a
fluid’s flow around an object, detaching the
boundary layer from the body generating a
wake of recirculating flow. Whenever a fluid is
deflected by an object, it will attempt to
maintain contact with its surface, hindered by
sharper edges. This leads to different fluid
accelerations at diverse points perpendicular to
the surface, and perhaps, flow separation if the
changes of the fluid’s velocity prevent it from
adhering to the surface.

Acceleration is higher at the impact point and
lower where the fluid tries to fill up the spaces,
as seen in fig. 7. This creates a difference in
pressure between the front and rear of an
object, proportional to the resulting net force,
retarding forward motion. Flow separation may

At pt

po

D
L

3

Fig. 4 - Thrust of a D3-P motor over time.

Fig. 5 - Torque exerted by thrust vectoring.

Fig. 6 - Components of aerodynamic
forces relative to the flow.

also cause vortex shedding, an oscillating flow
that takes place when fluids flow as opposed to
streamlined, which may cause undesired
vibrations and instability.

Friction drag is the result of the friction
between a fluid and an object’s surface. Shear
stresses create a region where flow varies from
rest, near the walls of an object, to a maximum
velocity at the main stream of the flow as
shown by fig. 7. These shearing forces, that
push different parts of a body or fluid in
opposite directions simultaneously, rely on the
fluid’s viscosity to exert drag forces tangential
to the surface and deductively, proportional to
the exposed or wetted area. Greater shear
stresses or velocity gradients translate into
higher friction forces.

The nearest fluid layer to a surface is identified
as the boundary layer and might be laminar or
turbulent, characterized by smooth paths and
chaotic movement respectively. The Reynolds
number, calculated using eq. (10), helps
identify the type of flow and predict flow
patterns, which will be looked at in more detail
later in the paper. Drag forces under turbulent
flow, associated with higher Re, are greater to
those encountered in laminar flow, attributed to
low Re, due to the more irregular interactions
with an object’s surface.

The resultant drag force may be obtained as
suggested by ref. [3] (Nakayama, 2018) by
integrating the pressure and friction
contributions over the surface area , if the
distribution of these forces is known the drag.
Hence:

Where is the angle between the flow vectors
and the normal to the surface, such that the
components of the pressure and friction
tangential to the flow are obtained. However,
this scenario is highly unlikely and requires
complex computational fluid dynamics, so the
following equation derived in ref. [4]
(Maxemow, 2013) may be used instead:

The equation above requires determining a
value for the drag coefficient , which varies
with each set of fluid conditions and object’s
shape and angle of attack. Experimentation
demonstrates that for fixed drag coefficients
the resultant drag appears to be proportional to

p f
Aw

φ

CD

4

(4)D = ∫A
(−pdcos(φ) + fdsin(φ))d A

D = 1
2 pf v2

f CD Ar (5)

Fig. 6 - Pressure drag as a result of
pressure variation and flow deflection.

Fig. 7 - Friction drag as a result of greater
shear stresses and velocity gradients.

D

D

the pressure of the fluid , the flow’s velocity

 squared and the reference area ,

commonly defined as the cross sectional area.
Correlations from which eq. (5) may be
obtained. Nonetheless, determining the of
an object becomes complex due to the multiple
factors this coefficient accounts for and the
chaotic nature of fluids. Therefore, it is
typically done experimentally; however, for the
purpose of this work a method to calculate a
plausible approximation will be presented later.

Lift

Newton’s third law of motion states that, for
every action, there is an equal and opposition
reaction, and explains how an object may be
forced in the opposite direction to the deflected
fluid. Variations in the angle of attack lead to
different fluid deflection patterns, and thus,
diverse lift contributions. Additionally, as the
flow of a fluid is deflected over the surface of a
body, its pressure varies at different points.
Flow will be faster wherever there is more
surface area to cover, leading to lower
pressures. This uneven distribution of pressure
across an object will force an object and
contribute to the lift.

Rockets generally have low lift to drag ratios
as they already use thrust instead of lift to
oppose weight, making this aerodynamic force
undesirable in rocketry. However, lift should
not be neglected given its significant variation
upon the angle of attack and considerable
effect on a rocket’s flightpath.

Similar to drag calculations, lift force may be
obtained by integrating the pressure p and
friction f contributions over the surface area, if
the distribution of these forces is known. Such
that:

Where is utilized to obtain the components
of the pressure and friction perpendicular to the
flow. Otherwise, lift may be calculated with the
the more pragmatic equation:

Formulae to estimate the lift coefficient will
be provided later on as an alternative to
experimental calculations.

Aerodynamic Properties

As noted previously, drag and lift are oriented
in respect to the flow’s direction, being
tangential and perpendicular to it respectively.
However, for simplicity, these forces may be
divided into an alternate set of perpendicular
components, axial drag , tangential to the
body, and normal force , perpendicular to the

pf

vf Aref

CD

φ

CL

A
N

5

L = 1
2 pf v2

f CL Ar

(6)

(7)

L = ∫A
(−pdsin(φ) + fdcos(φ))d A

Fig. 8 - Lift due to a variation of pressure
and a counter-action to the flow deflection.

body, for which their respective coefficients
will be empirically calculated.

Therefore:

Flow

Note that the flow of a fluid is relative to the
velocity of an object. Despite the apparent
original velocity of the fluid to a stationary
object or the wind for instance, the flow will
tend to oppose the velocity of the object as it
gains speed and overweights the fluid’s
apparent velocity to an observer in rest. The
flow’s velocity may be simply calculated by

adding up the velocity vector of the wind and
the inverse velocity vector of the rocket.

Mach and Reynolds numbers

Aerodynamic properties may be calculated
using the object’s Mach number or the fluid’s
Reynolds number, due to the more apparent
relations between aerodynamic forces and
these ratios that describe the speed of an object
or fluid with respect to other factors.

The Mach number is the ratio of the speed
of an object to the speed of sound , which
varies with the medium’s density and
temperature, assumed to be constant in this
work given that model rockets typically fly at
low altitudes, where differences are not
significant. At higher speeds, a body will
locally compress the fluid and alter its density,
on which the aerodynamic forces depend.
While compressibility factors may be ignored
at subsonic speeds, they become important at
transonic and supersonic speeds as discussed in
ref. [5] (Hall, 2021).

The parameter frequently appears in
aerodynamical equations , characterizing the
flow speed in subsonic and supersonic flow,
such that as the flow speed tends to the
transonic region at , approaches .

The Reynolds number is the ratio of inertial
forces to viscous forces. This similarity
parameter is used to identify flow patterns
whenever a fluid is disturbed and forced across

f

vw

vo

vf

M
c

β

M = 1 β 0

Re

6

⃗vf = ⃗vw − ⃗vo (10)

M = vo

c
(11)

β = � M2 − 1 � (12)

D = N sin(α) + A cos(α)
L = N cos(α) − A sin(α)

(8)
(9)

Fig. 9 - Components of aerodynamic
forces relative to the rocket.

Fig. 10 - Relative flow obtained from the
velocities of the wind and the rocket.

an object, commonly categorized as laminar or
turbulent, attributed to low and high
respectively.

Angle of Attack

Aerodynamic properties are subject to the
angle between the flow and an object’t
centreline, namely the angle of attack α.

This angle ranges from 0º to 180º, whenever
the rocket’s velocity opposes that of the flow
and follow the same direction respectively.

Variations in the angle of attack translate into
different fluid pressure patterns around an
object as the flow’s path is altered, and
therefore, drag and lift forces as well.

Calculations may require a correction in the
angle of attack to maintain values absolute:

Rocket stability

Similar to an object’s CG, the individual
aerodynamic or hydrodynamic forces may be
combined into a single force acting on the
centre of pressure (CP). This point is rarely
located where the CG is, so aerodynamic
forces will induce a torque around the rocket’s
pivot point. Integrating the pressure over the
surface area of an object will determine the
position of this point. An approximation to
calculate the CP’s location is presented in
Appendix A.

This pitching moment is mostly exerted by the
aerodynamic forces perpendicular to the
rocket’s centreline, otherwise identified as the
normal forces, greater at angles attack nearer to

. Stable rockets tend to fly at minimum
angles of attack opposing the flow, as
otherwise they would be accelerating towards
undesirable directions. Aerodynamic forces
acting on the CP of a rocket flying at an angle
of attack will produce a pitch so that the CG is
always in front of the CP with respect to the
flow. Therefore, if the CP of a rocket is above

Re α′

90∘

7

α′ = {α if 0∘ < α ≤ 90∘

180 − α if 90∘ < α ≤ 180∘M = vo

c
(13)

Fig. 11 - Angle fo attack relative to the flow.

Fig. 12 - Variation of pressure with angle of attack.

(14)

Fig. 13 - Torque exerted around the rocket’s CG
by the aerodynamic forces acting on the CP.

or before its CG, the rocket is naturally
unstable, as at the aerodynamic forces will tilt
the rocket to a position where the thrust is
acceleration the rocket in a undesired direction,
and perhaps, lead to a loss of control and make
it spin uncontrollably, as pictured in fig. 14.
However, if the CP is brought below or behind
the CG by adding some fins at the base of the
rocket, increasing the pressure at their location,
for example, the corrective pitching moment
produced by the aerodynamic forces will keep
the rocket facing against the flow and fly in the
desired orientation as depicted by fig. 15.

Note that the torque is proportional to the
distance between the pivot point and wherever
the force is applied, that is, the CG and CP

respectively. Thus, the farther this two points
are located from each other, the greater the
pitching moment.

Axial Coefficient

The axial drag is the component of the
aerodynamic forces tangential to the rocket’s
centreline, for which eq. (5) may be used
interchangeably by replacing the drag
coefficient with the axial drag coefficient ,
expressed as the combination of the friction
drag , body , base and fin

pressure coefficients at an angle of attack .

The approximation of the Ca value at various
angles of attack requires its calculation at
angles of attack of 0º and 180º as estimated by
ref. [6] (Jorgensen, 1973). This increases
reliability since the coefficient of the closest
angle is used, such that:

Friction drag coefficient

The friction coefficient is the contribution to
the axial drag coefficient due to friction drag.
Methods for estimating its value under laminar
and turbulent flow are determined by the
different scopes of Reynolds number. These
ranges are somewhat denoted by the rocket’s
critical Reynolds number , the point at
which the flow becomes turbulent, defined by
the approximate roughness height of its

A

CA

CAf CAp CAb CAn

i

Rec

Rs

8

CA =
CAα=0∘ ⋅ cos(α′)2 if 0∘ < α ≤ 90∘

CAα=180∘ ⋅ cos(α′)2 if 90∘ < α ≤ 180∘

CAα=i(CAf + CAp + CAb + CAn)α=i

(13)

(15)

(16)

Fig. 14 - Pitching moment due to aerodynamic
forces on a naturally unstable rocket.

Fig. 15 - Corrective pitching moment due to
aerodynamic forces on a stable rocket.

surface and the length of the rocket in ref. [7]
(Barrowman, 1967):

Some approximate roughness heights for
different surfaces retrieved from ref. [8] are
listed hereunder:

From theoretical and experimental data
presented in ref. [8] (Cheeseman, 1976) the
following piecewise function may be retrieved
to calculate the skin friction coefficient :

Where the coefficient at below , for
which the experimental formulae are not
applicable, typically encountered at velocities
below , is assumed to be constant. The
critical Reynolds number defines the point at
which the skin friction coefficient can be
considered independent of .

Someone would expect more friction drag on
turbulent flow; however, higher Reynolds
numbers translate into lower ratios of viscous
to inertial forces. Higher velocities, to which
greater Reynolds numbers are mostly related,
will increase inertial forces while decreasing
frictional forces.

Compressibility corrections to account for the
deviation of the thermodynamic properties of a
fluid and its modified density as an object
moves faster through it may be applied.

At subsonic speeds the corrected coefficient

is independent from . In supersonic flow
however, the coefficient for Reynolds numbers
lower and higher than critical, turbulent and
roughness limited layers respectively, may be
corrected differently.

The optimized coefficient can then be used to
calculate the resultant friction coefficient by
scaling it to the appropriate wetted area
common to a reference area. The body and fins
wetted area are corrected for its cylindrical

Type of surface Height (µm)

Average glass 0.1

Finished and polished surface 0.5

Optimum paint-sprayed surface 5

Planed wooden boards 15

Paint in aircraft mass production 20

Dip-galvanized metal surface 150

Incorrectly sprayed aircraft paint 200

Raw wooden boards 500

Cf

Re 104

1 m /s

Re

C′ f

Re

9

Rec = 51 (Rs

l)
−1.039

Cf =

1.48 ⋅ 10−2 if Re < 104

1
(1.5 ln(Re) − 5.6)2 if 104 ≤ Re ≤ Rec

0.032(Rs
L)0.2 if Rec < Re

C′ f =

Cf (1 − 0.1M2) if M < 1
Cf

(1 + 0.15M 2)0.58 if 1 ≤ M and Re ≤ Rec

Cf

1 + 0.18M 2 if 1 ≤ M and Rec ≤ Re

(18)

(16)

(19)

(17)

Tab. 1 - Approximate roughness
heights for common surfaces.

Fig. 16 - Skin friction coefficient of turbulent,
laminar and roughness-limited boundary layers.

geometry and finite thickness respectively.
Interactions with the fluid will be higher with
greater wetted areas, deductively proportional
to the friction drag coefficient :

Where is the fineness ratio of the rocket,
the thickness and the mean aerodynamic
chord length of the fins.

Base pressure drag coefficient

The base pressure coefficient accounts for
the low pressure area generated at the base of
the rocket, where the body radius declines
briskly. The coefficient may be estimated using
the following empirical formula from ref. [9]
(Moore, 1994), obtained from the experimental
data referenced in ref. [10] (Moore, 1992):

The coefficient is at its peak throughout the
transonic range because of the shock waves
formation and general flow instabilities.

The base pressure coefficient can then be
scaled to a common reference area to obtain
the base drag contribution .

Where the amended base area accounts for
the disruption from the exhaust of a motor into
the area. An approximation is achieved by
subtracting the area of the thrusting propulsive
systems from the base area . Therefore, if
the base is the same size as the motor itself,
there will be no base drag. In the contrary, if
the base area is significantly greater than the
motor area, the base drag is similar to
whenever the rocket is coasting.

Tip pressure drag coefficient

The pressure drag coefficients of streamlined
rocket tips have been measured by ref. [11]
(Hoerner, 1965) and are presented by the
following figure:

The slightest rounding at the connection
between the tip and the body, defined by the

CAf

fB t
ζ

Cb

CAb

A′ b

Am Ab

10

CAf = C′ f

(1 + 1
2 fB

) ⋅ Awb

Ar

+
(1 + 2t

ζ) ⋅ Awf

Ar

Cb = {0.12 + 0.13M2 if M < 1
0.25 / M if 1 ≤ M

(20)

CAb = A′ b

Ar
Cb

A′ b = Ab − Am

CtM=1 = sin(ε)

(21)

(22)

(23)

Fig. 17 - Empirical data of the base pressure drag
coefficient variation with the Mach number. Fig. 18 - Experimental data of the pressure

drag of various rocket tip geometries.

joint angle , reduces flow separation, and
thus, the drag coefficient considerably.
Appreciable pressure drag is encountered if the
transition is not smooth due to flow separation.

The pressure drag of a rocket tip may
therefore be calculated with the piecewise
function obtained from the additional
experimental data discussed in ref. [12]
(Convict & Faro, 1961):

Where and are computed to interpolate the
drag coefficient between the low subsonic and
transonic flow and its derivatives, following
the constraints:

The value for the specific heat ratio of air is
introduced by , and is the angle
between the conical body and the body
centreline:

Where lower fineness or diameter to length
ratios translate into higher pressure drag forces.

For blunt cylinders or rocket tips, which may
be accounted for at angles of attack over
where the rocket’s aft is facing against the
flow, the pressure drag coefficient may be
considered the same as the stagnation pressure,

or the pressure at areas perpendicular to the
flow, defined by ref. [11] (Hoerner, 1961) as:

The coefficient should then be scaled to the
tip’s front area , common to the rocket’s
reference area, to get the resultant contribution

 to the axial drag coefficient:

Transition and boattail pressure drag

The pressure drag of transitional rocket

components, like the one identified in fig. 19,
is assumed to be the same as that of a tip,
scaled to the difference in area between the
fore and aft ends of the transition.

The pressure drag coefficient of a boattail,
like the one in fig. 19, is deductively related to
the base drag and the length to height ratio ,
calculated from the boattail’s length and fore

 and aft diameters. Data from ref. [7]

(Barrowman, 1967) suggests that:

ϕ

CT

a b

γ = 1.4 ε

d l

90∘

CT

At

Ct

Cj

Ajf Aja

Cv

λ
lv

dvf dva

11

CTM=0 = 0.8 ⋅ sin2(ϕ)

∂CT

∂M M=1 =
4 − 2CtM=1

γ + 1

CT =

a ⋅ Mb + CTM=0 if M < 1
CTM=1.3 − CTM=1

0.3 (M − 1) + CTM=1 if 1 ≤ M ≤ 1.3

2.1 s i n2(ε) + 0.5 sin(ε)
β if 1.3 < M

tan(ε) = d
2 l

(24)

CTM=1 = sin(ε)

(25)

(26)

(27)

(28)

(30)

Cq = 0.85 ⋅
1 + M2

4 + M 4
40 if M < 1

1.84 − 0.76
M2 + 0.166

M4 + 0.035
M6 if 1 ≤ M

(29)

Cj =
� Ajf − Aja �

Ar
CT

Ct = At

Ar
CT

(31)

Cv = Ab

Ar
Cb ⋅

1 if λ < 1
3 − λ

2 if 1 ≤ λ ≤ 3
0 if 3 < λ

λ = lv

dvf − dva
(32)

(33)

Body pressure drag coefficient

The total pressure drag coefficient may then be
calculated by adding the tip , transition

and boattail pressure drag coefficients.

Fin pressure drag coefficient

The fin pressure drag is highly dependent on its
profile geometry, typically classified as
rectangular , tapered , or rounded .

The coefficient may be obtained by adding
the pressure drag of the leading and trailing

 edges, scaled up to the fin frontal area

common to the reference area, where pressure
drag is encountered.

From experimentation, empirical formulae may
be derived to calculate the pressure drag of
different geometry leading and trailing edges,
as approached in ref. [7] (Barrowman, 1967).

Where is the average leading edge angle,
identified in fig. 24. The pressure drag is
higher for lower values of , as they translate
into sharper transitions, and therefore,
increased flow separation. The pressure drag is
greater at transonic velocities, where shock
waves form due to the compression of the fluid
and create chaotic flow which does not
stabilize until supersonic flow is established.

Normal Coefficient

The normal force is the component of the
aerodynamic forces perpendicular to the
rocket’s centreline and may be calculated using
eq. (7) by substituting the lift coefficient for the
normal coefficient , defined as the
combination of the lift exerted by symmetrical
body components and the fins .

Ct Cj

Cv

⊓ ∧ ∩

Cn

Cnl

Cnt Anf

μ

μ

N

CN

CNa + CNl CNn

12

CAn =
Anf

Ar
(Cnl + Cnt)

Cn∩l =
(1 − M2)−0.417 − 1 if M < 0.9
1 − 1.785(M − 0.9) if 0.9 ≤ M ≤ 1
1.214 − 0.502

M 2 + 0.1095
M4 if 1 < M

Cnl =
Cs for ⊓
Cn∩l ⋅ cos2μ for ∧
Cn∩l for ∩

Cnt =
Cb for ⊓
0 for ∧
Cb
2 for ∩

CN = CNa + CNl + CNn

Fig. 20 - Typical rectangular,
tapered and rounded fin geometries.

CAp = Ct + Cj + Cv (34)

Fig. 19 - Rocket with transitional
components and a boattail.

(35)

(36)

(37)

(38)

(39)

Symmetrical body components normal
coefficient

The normal force at a point for an axially
symmetric body may be computed with the
cross sectional area of the body at position
and the local downwash .

According to ref. [7] (Barrowman, 1967) based
on the potential flow theory and with reliable
results accurate to about 6%:

Substituting values into eq. (7) and integrating
the cross sectional area derivative over the
component length the normal coefficient

can be obtained:

These equations demonstrate that the normal
force coefficient will depend on the difference
of the of cross sectional area at the aft and fore
ends. However, the lift due to cylindrical
bodies with constant cross sectional areas, even
at low angles of attack, noted by experiments
in ref. [13] (Vallini, 2015) counterclaims this
approach. Thus a correction term is added
accounting for body lift ref. [6] (Jorgensen,
1973):

Where is the crossflow drag coefficient for a
section of an undefined length cylinder placed
normal to an air stream, and is the crossflow
drag proportionality factor, denoted by the ratio
of the crossflow drag coefficient for a finite
length cylinder to that of a infinite length
cylinder. The variation of is well
documented by fig. 21:

However, at low subsonic speeds below
, the Reynolds number may have a

significant effect on the coefficient, for which
additional experimental data was also recorded
and is shown in fig. 22:

The following regression line can be derived
from the experimental data, such that:

Nx x

Ax x
wx = vf sin(α)

CNa

Cd

η

Cd

M ≈ 0.5

13

Nx = pvf
∂
∂x

[Axwx]

= pv2
f sin(α) dAx

dx

CNax
= Nx

1
2 pv2

f Ar

= pv2
f sin(α) dAx

dx

CNa = 2sin (a)
Aref ∫

l

0

dA(x))
dx

d x

= 2 sin(α)
Aref

[Ax=l − Ax=0]

CNl = ηCd
Ap

Ar
sin2(α)

Fig. 21 - Variation of the crossflow
drag coefficient with Mach number.

Fig. 22 - Variation of the crossflow
drag coefficient with Reynolds number.

(40)

(41)

(42)

(43)

C′ d =

1.2 if Re < 105.25
−2.575 ⋅ 10−6

⋅ (Re − 105.25) + 1.2
 if 105.25 ≤ Re ≤ 105.75

1
6 l n (Re) − 2 if 105.75 < Re (44)

The experimental variation of with the length
 to diameter ratio of a circular cylinder is

presented by the following figure:

From which the following equation may be
obtained to estimate its value:

Fins normal coefficient

The normal force coefficient derivative for
one fin at subsonic velocities may be
calculated using a semi-empirical approach
introduced in ref. [7] (Barrowman, 1967) and
the thin airfoil theory of potential flow [ref. 14]
(Gaunaa, 2006).

Where is the mid chord sweep angle, as seen
in fig. 24, and is the corrective value
accounting for the sweep of the fin given by:

By substitution, the coefficient becomes:
Otherwise, the normal force coefficient of a fin
at supersonic velocities can be calculated
through a third-order series expansion used in
ref. [15] (Barrowman, 1966) that defines the
local pressure coefficient .

η
l d

CN

ϑ
FD

CP

14

CN =
2π
β FD

Afin
Aref

cos(ϑ)

2 + FD 1 + 4
F2

D

α

FD =
2s2
Aref

1
2π CNα0cosϑ

Cn =
2π s2

Aref
α

1 + 1 + (βs2
Afincos(ψ))2

CP = K1α + K2α2 + K3α3

K1 = 2
β

K2 = (γ + 1)M4 − 4β2

4β4

K3 = (γ + 1)M8

6β7

+ (2γ2 − 7γ − 5)M6

6β7

+ 10(γ + 1)M4 + 8

Fig. 24 - Average leading edge angle
and mid chord sweep angle of a fin.

(46)

(47)

(48)

(49)

(50)

(51)

(52)

Cd =

C′ d if M < 0.5
20.9M + 0.2 if 0.5 ≤ M < 1
−0.1 ln(0.1(M − 1)) + 1.1 if 1 ≤ M ≤ 5
1.2 if M < 5

Fig. 23 - Variation of the crossflow drag
proportionality with length to diameter ratio.

η = 1
12 ln(l

d
+ 1) + 0.5

(45)

(53)

The lift force of a fin is given by:

Which may the be substituted into eq. (7) to
obtain the normal force coefficient of a fin:

Altogether, the normal force coefficient for

a number of fins is given by the sum of their
individual force coefficient at an angle of
attack , depicted by fig. 24.

Where is a correction term for interference
between fins, suggested by ref. [16] (United
States, 1968):

Simulation

The designed flight simulation software was
built on Swift. The code developed may be
found in Appendix C, and its architecture is
further explained in Appendix B. Comparisons
between simulated and experimental flight data
were made to validate the reliability of the
software, Apex Dream. These include a simple
model rocket and an advanced or thrust
vectored controlled model rocket. The designs
of the rockets from the experiments were
introduced like a controlled variable into the
flight simulation software, including the
alternative software OpenRocket and RockSim
for further comparison. Flight profiles are
outlined by the following figures:

N

Cn

CNn

y

Λ

Ξ

15

N = CP ⋅ 1
2 pf v2

f Af

Cn = N
1
2 pf v2

f Ar

=
Af

Ar
CP

CNn = Cn (
y

∑
i=1

sin2(Λi)) ⋅ Ξ

Fig. 24 - Normal force of fins and
their individual angle of attack.

Ξ =

1 for 1 ≤ y ≤ 4
0.984 for y = 5
0.913 for y = 6
0.854 for y = 7
0.810 for y = 8
0.750 for 8 ≤ y

(54)

(55)

(56)

(57)

Fig. 25 - Experimental and simulated flight
comparison of a simple model rocket.

Fig. 26 - Experimental and simulated flight
comparison of an advanced model rocket.

The descent phase of a rocket flight is not
developed, and thus, the simulated data is
interrupted at apogee, the highest altitude.
Moreover, fig. 26 only shows the simulated
data by Apex Dream as it is the only simulation
software compatible with the thrust vector
control system featured by the experimental
advanced model rocket.

All simulations appear to be notably optimistic,
predicting slightly higher apogees, from the
experimental flights. Errors are presented by
the following tables:

Conclusion

Flight simulations are key to an optimized
rocket design and risk minimization; however,
there is no available flight simulation software
compatible with commonly featured systems in
advanced model rocketry. Therefore, the forces
acting on a rocket during its flight were deeply
studied to develop an advance model rocket
flight simulation software.

This work not only provides detailed estimates
for aerodynamic properties, for which there is
no defined mathematical models, but also
introduces a powerful tool that may be used by
any advanced model rocketeer. Results are a bit
optimistic, probably due to:

Assumptions were made in the calculation of
aerodynamic properties. Estimations for the
coefficients of a component with a determined shape
were applied to a more varied range of shapes based
on their similarity. While these assumptions had a
solid justification and demonstrated not to be very
off, given the error of the simulation, they may be
corrected through more extense calculation that
adjust to a greater variation of components and their
forms.

16

Tab. 2 - Errors for comparison between experimental
and simulated data of a simple model rocket.

Tab. 3 - Errors for comparison between experimental
and simulated data of an advanced model rocket.

Apogee (m) Error (%)

Experimental 97.12 - %

Simulated
(Apex Dream)

113.63 17%

Apogee (m) Error (%)

Experimental 118.53 - %

OpenRocket 134.08 13%

RockSim 143.02 21%

Simulated
(Apex Dream)

138.10 17%

Fig. 27 - Apex Dream design interface.

Fig. 28 - Apex Dream simulation interface.

Overall, the flight simulation software is
reliable enough with errors below 20% and
similar in accuracy to other popular flight
simulation software, which also proves the
reliability of the referenced sources. Thus, may
be used to optimise the rocket design.
Approximations for aerodynamic forces may

be further develop by accounting for roll,
additional sources of drag which were not
considered in this work due to their small
contribution to the resultant drag and lift of a
rocket, or even by performing more wind
tunnels experimentation to retrieve more
accurate formulae. Despite the effectiveness of
Apex Dream, the software may still be utilized
to tune the systems of thrust vectored
controlled model rockets, as these are not
dependant on the flight profile, but rather the
variation of aerodynamic properties.

In conclusion, this investigation answers the
initial research question to a great extent, yet,
more investigation could and will be made to
improve the reliability of the simulation
software and include more features. This work
brought me a step closer to the flight of the
advanced model rocket I am currently
developing and only dreamt of to this date.
Hopefully, this work contributes to the model
rocketry community by redefining the
boundaries of available flight simulation
software and expanding possibilities, allowing
to design reliably advanced model rockets
featuring thrust vector control, tune their
systems, and estimate their aerodynamic
properties and flightpaths.

Assumptions were made in the calculation of
aerodynamic properties. Estimations for the
coefficients of a component with a determined shape
were applied to a more varied range of shapes based
on their similarity. While these assumptions had a
solid justification and demonstrated not to be very
off, given the error of the simulation, they may be
corrected through more extense calculation that
adjust to a greater variation of components and their
forms.

Wind disturbances were not taken into account,
which may have a considerable effect on real rocket
flight and therefore the experimental data as well,
probably contributing to the error. Wind disturbances
may be coded and accounted by flow calculations.
Perhaps, the characteristics of such disturbances
could be manually introduced by the user.

Empirical formulae was derived from experimental
data under limited conditions, including different
ranges of Mach and Reynolds numbers. The
equations extrapolated observed relations to greater
ranges which may have led to little inaccuracies in
calculation, again, contributing to the small error in
the simulation.

Sources were carefully selected based on their
reliability. Note that the bibliography only makes
reference to this selection of sources. The models that
best predicted the aerodynamic properties in
comparison to wind tunnel data and other simulation
software, line OpenRocket in ref. [17] (Niskanen,
2013), were used. References include a primary and
secondary sources, that present experimental data and
empirical formulae. Many come from prestigious
organizations or individuals, such as NASA.

Introduced rocket characteristics may have been
slightly off due to inaccurate measurement, which
would have led to miscalculations of the rocket’s
aerodynamic properties and therefore greater errors.
This could by retrieving more accurate data, perhaps
obtained with more precise tools.

Aerodynamic phenomenon with almost negligible
effects on ideal conditions, such as the roll of a rocket
exerted by the aerodynamic forces, were not
approximated nor taken into account in any way.
Future version of the simulation software will include
these and hopefully give more accurate results, for
which additional research will have to be done.

17

Tab. 4 - Evaluation and discussion

Appendix A

Center of pressure

The document cited in ref. [18] (Barrowman &
Barrowman, 1966) presents algebraic methods
to determine the location of the CP:

The coefficient of the denominator and each
adding term, corresponding to the rocket tip,
any transition and the fins respectively, can be
calculated from:

Where the variables:

 = tip length
 = tip base diameter

 = transition fore diameter

 = transition aft diameter

 = transition length

 = distance from tip to transition fore

 = fin root chord length

 = fin tip chord length

 = fin mid chord length

 = fin height
 = base radius
 = distance from root to tip leading edge
 = distance from tip to fin root

 = number of fins

lt
dtb

djf

dja

lj
Xp

lnr

lnt

lnm

hn

rb

Xr

Xb

y

18

XCP =
CPt Xt + CPj Xj + CPnXn

CP
(A.1)

CP = CPt + CPj + CPn (A.2)

CPt = 2

CPt =
2
3 lt for ∧
7
15 lt for ∩

CPt = 2 (
dja

dtb)
2

− (
djf

dtb)
2

Xj = Xp +
lj
3 1 +

1 −
djf
dja

1 − (
djf
dja)

2

CPn = (1 + rb

hn + rb)
4y (hn

db)
2

1 + 1 + (2lnm
lnr + lnt)

2

CPn = (1 + rb

hn + rb)
4y (hn

db)
2

1 + 1 + (2lnm
lnr + lnt)

2

Xn = Xb +
Xr(lnr + 2lnt)
3(lnr + lnt)

+ 1
6 ((lnr + lnt) −

lnrlnt
lnr + lnt)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

Appendix B

Simulation architecture

The simulation was built on Swift. Simple
individual characteristics of a rocket, limited to
the range of variations in from, are introduced
by the user. Additional characteristics, like the
chord length of a fin or the joint angle of a
rocket tip, are calculated automatically by the
simulation software from the simpler inputted
data. Designing a rocket in Apex Dream is
made easier because of this, however, it may
also lead to some inaccuracies. Values for the
conditions are also introduced, including the
angle of the wind and its velocity. Note
however that the simulation software does not
account for disturbances in wind yet. The user
also sets up the simulation by defining the
running frequency, used to calculate the period
between each set of calculations for an instance
in the flight.

A loop runs from liftoff to recovery; however,
aerodynamic properties for the descent phase
of the rocket flight weren’t appropriately coded
as of now, which makes the simulation only
valuable up to apogee, the highest point of a
rocket flightpath. For every instance of the
loop the simulation first codes all flow
properties, including the angle of attack,
derived from the values from the previous
instance. Then, all forces are calculated,
including weight, thrust and aerodynamic
forces. Model rocket often fly at low altitudes
were the difference in weight is almost
negligible, but it is still accurately calculated
based on the rocket’s altitude using basic
gravitational equations. The thrust is computed
by linearly interpolating the different points of

the data base of a determined rocket motor. The
direction of the thrust is also accounted for
depending on the rocket’s orientation and the
thrust vectoring, which differs this simulation
software from others. Then, all aerodynamic
properties are calculated for every component
of the rocket with the equations presented by
this work, later used with the drag and lift
equations.

All this forces are stored as two-dimensional
vectors, although the simulation software is
soon expected to expand to the three
d imens ions . This however, may not
compromise the effect iveness of the
s imula t ions . The l inear and angular
accelerations of the rocket are then calculated
with the force vectors using force and torque
equat ions. With previous and actual
acceleration new velocities and positions can
be computed. If the rocket has not landed the
loop runs again.

19

Appendix C

Simulation code

import Foundation
import simd

func degreesToRadians(_ degrees: Double) -> Double {
 return degrees * .pi / 180
}

func radiansToDegrees(_ radians: Double) -> Double {
 return radians * 180 / .pi
}

struct Motor {
 var id = UUID()
 var name = String()
 var manufacturer = String()
 var data = [Double:Double]()
 var totalMass = Double()
 var propellantMass = Double()
}

enum FinType {
 case slanted, tapered, rectangular, rounded
}

struct Rocket {
 var id = UUID()
 var name = "Custom Rocket"
 var manufacturer: String = "User"

 var mass = 0.0
 var massCentre = 0.0
 var pressureCentre = 0.0

 var length = 0.0
 var diameter = 0.0

 var roughnessHeight = 0.00

 var jointAngle = 0.0

 var tipChord = 0.0
 var rootChord = 0.0
 var height = 0.0
 var thickness = 0.0
 var finsNumber = 0.0
 var tipSweepAngle = degreesToRadians(0.0)
 var midSweepAngle = degreesToRadians(0.0)
 var finType = FinType.slanted

 var volume: Double {
 return .pi * pow((diameter / 2), 2) * length
 }
 var coneRatio: Double {
 return atan(((diameter / 2) / length) * 180 / Double.pi)

20

 }
 var finArea: Double {
 return (tipChord + rootChord) / 2 * height
 }
 var averageChord: Double {
 return (tipChord + rootChord) / 2
 }
 var wettedBodyArea: Double {
 return .pi * length * diameter
 }
 var wettedFinsArea: Double {
 return finArea * 2 * Double(finsNumber)
 }
 var frontFinArea: Double {
 return thickness * length * Double(finsNumber)
 }
 var baseArea: Double {
 return .pi * pow(diameter / 2, 2)
 }
 var referenceArea: Double {
 return .pi * pow(diameter / 2, 2)
 }
 var planformArea: Double {
 return diameter * length
 }
 var planformCentroid: Double {
 return length / 2 + 0.05 * length
 }
 var rotationalInertia: Double {
 return (mass * pow(diameter / 2, 2)) / 4 + (mass * pow(length / 2, 2)) / 12
 }

 var motor: Motor = Motor(id: UUID(),
 name: "Custom Motor",
 manufacturer: "User",
 data: [0.000: 0.000],
 totalMass: 0.0163,
 propellantMass: 0.003)
}

struct Conditions {
 var windSpeed = 0.0
 var windOrientation = simd_double2(x: 0, y: 0)

 var wind: simd_double2 {
 return windSpeed * simd_normalize(windOrientation)
 }
}

struct Settings {
 var frequency = 50.0

 var period: Double {
 return 1 / self.frequency
 }
}

struct FlightData {
 var id = UUID()
 var title = "Flight Simulation"

21

 var date = Date()

 var time = [Double]()

 var rocket: Rocket
 var conditions: Conditions

 var position = [simd_double2]()
 var orientation = [simd_double2]()

 var velocity = [simd_double2]()
 var angularVelocity = [Double]()
 var acceleration = [simd_double2]()
 var angularAcceleration = [Double]()

 var axialDrag = [simd_double2]()
 var axialDragCoefficient = [Double]()

 var frictionDragCoefficient = [Double]()
 var baseDragCoefficient = [Double]()
 var pressureDragCoefficient = [Double]()

 var normalForce = [simd_double2]()
 var normalForceCoefficient = [Double]()

 var pitchMomentCoefficient = [Double]()

 var thrust = [simd_double2]()
 var weight = [simd_double2]()

 var attackAngle = [Double]()
 var reynoldsNumber = [Double]()
 var pressureCentre = [Double]()
}

func flightSim(rocket: Rocket, conditions: Conditions, settings: Settings) -> FlightData {
 var data = FlightData(rocket: rocket, conditions: conditions)

 var running = true
 var loop = 0

 while running {
 let time = Double(loop) * settings.period
 data.time.append(time)

 guard loop > 0 else {
 data.position.append(simd_double2())
 data.orientation.append(simd_double2(x: 0, y: 1))
 data.velocity.append(simd_double2())
 data.angularVelocity.append(Double())
 data.acceleration.append(simd_double2())
 data.angularAcceleration.append(Double())
 data.axialDrag.append(simd_double2())
 data.axialDragCoefficient.append(Double())
 data.frictionDragCoefficient.append(Double())
 data.baseDragCoefficient.append(Double())
 data.baseDragCoefficient.append(Double())
 data.pressureDragCoefficient.append(Double())
 data.normalForce.append(simd_double2())
 data.normalForceCoefficient.append(Double())
 data.pitchMomentCoefficient.append(Double())

22

 data.thrust.append(simd_double2())
 data.weight.append(simd_double2())
 data.attackAngle.append(Double())
 data.reynoldsNumber.append(Double())
 data.pressureCentre.append(Double())

 loop += 1
 continue
 }

 let airDensity = 1.225
 let airViscosity = 1.81 * pow(10, Double(-5))
 let soundSpeed = 340.0

 let flow = -data.velocity[loop - 1] + data.conditions.wind

 let machNumber = simd_length(data.velocity[loop - 1]) / soundSpeed

 let reynoldsNumber = airDensity * simd_length(flow) * rocket.length / airViscosity
 let criticalReynoldsNumber = 51 * pow(rocket.roughnessHeight / rocket.length, -1.039)
 data.reynoldsNumber.append(reynoldsNumber)

 //check
 var attackAngle = acos(simd_dot(data.orientation[loop - 1], flow) / simd_length(data.orientation[loop - 1]
* simd_length(flow)))
 data.attackAngle.append(attackAngle)

 var correctedAttackAngle: Double {
 if abs(attackAngle) < 90{
 return abs(attackAngle)
 } else {
 return 180 - abs(attackAngle)
 }
 }

 let keyTimes = Array(rocket.motor.data.keys).sorted(by: <)

 let previousTime = keyTimes.lastIndex(where: {$0 <= time})

 var thrust: simd_double2 {
 if previousTime != (keyTimes.count - 1) {
 let lastKey = simd_double2(x: keyTimes[previousTime ?? 0],
 y: rocket.motor.data[keyTimes[previousTime ?? 0]] ?? 0.0)
 let nextKey = simd_double2(x: keyTimes[(previousTime ?? 0) + 1],
 y: rocket.motor.data[keyTimes[(previousTime ?? 0) + 1]] ?? 0.0)

 let slope = (nextKey.y - lastKey.y) / (nextKey.x - lastKey.x)

 return (slope * (time - lastKey.x) + lastKey.y) * simd_normalize(data.orientation[loop - 1])
 } else { return simd_double2() }
 }

 data.thrust.append(thrust)

 var motorMass: Double {
 if time > keyTimes[keyTimes.count - 1] {
 return rocket.motor.totalMass - rocket.motor.propellantMass
 } else {
 return ((rocket.motor.totalMass - rocket.motor.propellantMass) - rocket.motor.totalMass) /
(keyTimes[0] - keyTimes[keyTimes.count - 1]) * time + rocket.motor.totalMass
 }

23

 }

 let totalMass = rocket.mass + motorMass

 var weight: simd_double2 {
 if data.position[loop - 1].y > 0 {

 let earthMass = 5.972 * pow(10, Double(24))
 let earthRadius = 6.371 * pow(10, Double(6))
 let G = 6.67 * pow(10, Double(-11))

 let g = G * earthMass / pow(earthRadius + Double(data.position[loop - 1].y), 2)

 return (totalMass * Double(g)) * simd_normalize(simd_double2(x: 0, y: -1))
 } else { return simd_double2() }
 }

 data.weight.append(weight)

 var frictionCoefficient: Double {
 var approximation: Double {
 if reynoldsNumber < pow(10, 4) {
 return 1.48 * pow(10, -2)
 } else if reynoldsNumber > pow(10, 4) && reynoldsNumber < criticalReynoldsNumber {
 return 1 / pow(1.5 * log(reynoldsNumber) - 5.6, 2)
 } else {
 return 0.032 * pow(rocket.roughnessHeight / rocket.length, 0.2)
 }
 }
 if simd_length(flow) < soundSpeed {
 return approximation * (1 - 0.1 * pow(machNumber, 2))
 } else {
 return approximation / pow(1 + 0.15 * pow(machNumber, 2), 0.58)
 }
 }

 var frictionDragCoefficient: Double {
 if rocket.finsNumber > 0 {
 return (frictionCoefficient * (((1 + (1 / (2 * rocket.length / rocket.diameter))) *
rocket.wettedBodyArea + (1 + (2 * rocket.thickness) / rocket.averageChord) * rocket.wettedFinsArea) /
rocket.baseArea)) * pow(abs(cos(attackAngle)), 2)
 } else {
 return (frictionCoefficient * (((1 + (1 / (2 * rocket.length / rocket.diameter))) *
rocket.wettedBodyArea) / rocket.referenceArea)) * pow(abs(cos(attackAngle)), 2)
 }
 }

 data.frictionDragCoefficient.append(frictionCoefficient)

 var baseDragCoefficient: Double {
 if machNumber < 1 {
 return ((rocket.baseArea / rocket.referenceArea) * (0.12 + 0.13 * pow(machNumber, 2))) *
pow(abs(cos(attackAngle)), 2)
 } else {
 return ((rocket.baseArea / rocket.referenceArea) * 0.25 / machNumber) * pow(abs(cos(attackAngle)),
2)
 }
 }

 data.baseDragCoefficient.append(baseDragCoefficient)

24

 var leadingFinPressure: Double {
 switch rocket.finType {
 case .rectangular:
 var stagnationPressure: Double {
 if machNumber < 1 {
 return 1 + (pow(machNumber, 2) / 4) + (pow(machNumber, 4) / 40)
 } else {
 return 1.84 - (0.76 / pow(machNumber, 2)) + (0.166 / pow(machNumber, 4)) + (0.035 /
pow(machNumber, 6))
 }
 }
 return 0.85 * stagnationPressure
 default:
 var leadingPerpendicularFinPressure: Double {
 if machNumber < 0.9 {
 return pow(1 - pow(machNumber, 2), -0.417) - 1
 } else if machNumber > 0.9 && machNumber < 1 {
 return 1 - 1.785 * (machNumber - 0.9)
 } else {
 return 1.214 - (0.502 / pow(machNumber, 2)) + (0.1095 / pow(machNumber, 4))
 }
 }
 switch rocket.finType {
 case .slanted:
 return leadingPerpendicularFinPressure * pow(cos(rocket.tipSweepAngle * Double.pi / 180), 2)
 default:
 return leadingPerpendicularFinPressure
 }
 }
 }

 //check
 var trailingFinPressure: Double {
 switch rocket.finType {
 case .rectangular:
 return baseDragCoefficient
 case .rounded:
 return baseDragCoefficient / 2
 default:
 return 0
 }
 }

 let finPressureCoefficient: Double = (rocket.frontFinArea / rocket.referenceArea) * (leadingFinPressure +
trailingFinPressure) * pow(abs(cos(attackAngle)), 2)

 //check
 var conePressureCoefficient: Double {
 if machNumber <= 1 {
 let startPoint = 0.8 * pow(sin(rocket.jointAngle * Double.pi / 180), 2)
 let startSlope = 0.0
 let finishPoint = sin(rocket.coneRatio * Double.pi / 180)
 let finishSlope = (4 / (1.4 + 1)) * (1 - 0.5 * finishPoint)

 return ((finishSlope - startSlope) / 2 * pow(machNumber, 2) + startPoint) *
pow(abs(cos(attackAngle)), 2)
 } else if machNumber > 1 && machNumber < 1.3 {
 return 1 * pow(abs(cos(attackAngle)), 2)
 } else {
 return (2.1 * pow(sin(rocket.coneRatio * Double.pi / 180), 2) + 0.5 * (sin(rocket.coneRatio *
Double.pi / 180) / sqrt(pow(machNumber, 2) - 1))) * pow(abs(cos(attackAngle)), 2)

25

 }
 }

 //boattail

 let pressureDragCoefficient = conePressureCoefficient + finPressureCoefficient
 data.pressureDragCoefficient.append(pressureDragCoefficient)

 let axialDragCoefficient = pressureDragCoefficient + baseDragCoefficient + frictionDragCoefficient
 data.axialDragCoefficient.append(axialDragCoefficient)

 let axialDrag = (axialDragCoefficient * airDensity * pow(simd_length(data.velocity[loop - 1]), 2) *
rocket.referenceArea / 2) * simd_normalize(-data.orientation[loop - 1])
 data.axialDrag.append(axialDrag)

 let crossflowDragProportionalityFactor = 0.7
 let crossflowDragCoefficient = 1.2

 var bodyNormalForceCoefficient: Double {
 if time > 0.25 {
 return 2 * (rocket.baseArea / rocket.referenceArea) * sin(attackAngle) +
crossflowDragProportionalityFactor * crossflowDragCoefficient * 1.1 * pow(sin(attackAngle), 2)
 } else {
 return 0
 }
 }

 let specificHeatRatio = 1.4

 var singleFinNormalForceCoefficient: Double {
 if machNumber <= 0 {
 return 0
 } else if machNumber > 0 && machNumber < 1 {
 return 2 * .pi * (pow(rocket.height, 2) / rocket.referenceArea) / (1 + sqrt(1 + pow((sqrt(1 -
pow(machNumber, 2)) * pow(rocket.height, 2)) / (rocket.finArea * cos(rocket.midSweepAngle)), 2)))
 } else {
 let k1 = 2 / sqrt(abs(pow(machNumber, 2) - 1))
 let k2 = ((specificHeatRatio + 1) * pow(machNumber, 4) - 4 * pow(sqrt(abs(pow(machNumber, 2) -
1)), 2)) / (4 * pow(sqrt(abs(pow(machNumber, 2) - 1)), 4))
 let k3 = ((specificHeatRatio + 1) * pow(machNumber, 8) + (2 * pow(specificHeatRatio, 2) - 7 *
specificHeatRatio - 5) * pow(machNumber, 6) + 10 * (specificHeatRatio + 1) * pow(machNumber, 4) + 8) / (6 *
pow(sqrt(abs(pow(machNumber, 2) - 1)), 7))

 return (rocket.finArea / rocket.referenceArea) * (k1 * degreesToRadians(attackAngle) + k2 *
degreesToRadians(attackAngle) + k3 * pow(degreesToRadians(attackAngle), 2))
 }
 }

 var finNormalForceCoefficient: Double {
 var interference: Double {
 switch rocket.finsNumber {
 case 0:
 return 0
 case 1...4:
 return 1.0
 case 5:
 return 0.948
 case 6:
 return 0.913
 case 7:
 return 0.854

26

 case 8:
 return 0.810
 default:
 return 0.750
 }
 }
 let contribution = Double(rocket.finsNumber) / 2

 return (singleFinNormalForceCoefficient * contribution * interference) * (1 + (360 /
Double(rocket.finsNumber)) / (rocket.height + 360 / Double(rocket.finsNumber)))

 }

 let normalForceCoefficient = bodyNormalForceCoefficient + finNormalForceCoefficient
 data.normalForceCoefficient.append(normalForceCoefficient)

 var normal: simd_double2 {
 let perpendicular = simd_normalize(simd_double2(x: data.orientation[loop - 1].y, y:
-data.orientation[loop - 1].x))

 if acos(simd_dot(data.orientation[loop - 1], perpendicular) / simd_length(data.orientation[loop - 1] *
simd_length(perpendicular))) < 90 {
 return simd_normalize(simd_double2(x: data.orientation[loop - 1].y, y: -data.orientation[loop -
1].x))
 } else {
 return simd_normalize(simd_double2(x: -data.orientation[loop - 1].y, y: data.orientation[loop -
1].x))
 }
 }

 let normalForce = (normalForceCoefficient * airDensity * pow(simd_length(data.velocity[loop - 1]), 2) *
rocket.referenceArea / 2) * normal
 data.axialDrag.append(axialDrag)

 var pitchMomentCoefficient: Double {
 if abs(attackAngle) < 90 {
 return ((rocket.volume - rocket.baseArea * (rocket.length - rocket.massCentre)) /
rocket.referenceArea * rocket.diameter) * sin(2 * correctedAttackAngle) * cos(correctedAttackAngle / 2) +
crossflowDragProportionalityFactor * crossflowDragCoefficient * (rocket.planformArea / rocket.referenceArea) *
((rocket.massCentre - rocket.planformCentroid) / rocket.diameter) * pow(sin(correctedAttackAngle), 2)
 } else {
 return -((rocket.volume - rocket.baseArea * rocket.massCentre) / rocket.referenceArea *
rocket.diameter) * sin(2 * correctedAttackAngle) * cos(correctedAttackAngle / 2) +
crossflowDragProportionalityFactor * crossflowDragCoefficient * (rocket.planformArea / rocket.referenceArea) *
((rocket.massCentre - rocket.planformCentroid) / rocket.diameter) * pow(sin(correctedAttackAngle), 2)
 }
 }

 data.pitchMomentCoefficient.append(pitchMomentCoefficient)

 var pressureCentre: Double {
 if normalForceCoefficient != 0 {
 return ((rocket.massCentre / rocket.diameter) - (pitchMomentCoefficient / normalForceCoefficient))
* rocket.diameter
 } else {
 return rocket.massCentre
 }
 }
 data.pressureCentre.append(pressureCentre)

27

 let acceleration = (weight + thrust + axialDrag + normalForce) / totalMass
 data.acceleration.append(acceleration)

 let angularAcceleration = simd_cross((rocket.pressureCentre - rocket.massCentre) *
-simd_normalize(data.orientation[loop - 1]), normalForce).z / rocket.rotationalInertia
 data.angularAcceleration.append(angularAcceleration)

 let velocity = data.velocity[loop - 1] + (data.acceleration[loop - 1] + acceleration) / 2 *
settings.period
 data.velocity.append(velocity)

 let angularVelocity = data.angularVelocity[loop - 1] + (data.angularAcceleration[loop - 1] +
angularAcceleration) * settings.period
 data.angularVelocity.append(angularVelocity)

 let translation = ((data.velocity[loop - 1] + velocity) / 2) * settings.period
 let position = data.position[loop - 1] + translation
 data.position.append(position)

 var rotation: Double {
 if position.y > 0 {
 return ((data.angularVelocity[loop - 1] + angularVelocity) / 2) * settings.period
 } else {
 return 0
 }
 }
 let orientation = simd_normalize(simd_double2(x: data.orientation[loop - 1].x * cos(rotation) -
data.orientation[loop - 1].y * sin(rotation), y: data.orientation[loop - 1].x * sin(rotation) +
data.orientation[loop - 1].y * cos(rotation)))
 data.orientation.append(orientation)

 loop += 1

 let limit = 500

 if loop > limit {
 running = false
 }
 }

 return data
}

flightSim(rocket: Rocket(), conditions: Conditions(), settings: Settings())

28

Bibliography

[1] - Nave, C. R. (2017). Moment of Inertia. Hyperphysics. Retrieved from http://hyperphysics.phy-
astr.gsu.edu/hbase/mi.html

[2] - Coker, J. (2022). Thrustcurve Hobby Rocket Motor Data. ThrustCurve. Retrieved from https://
www.thrustcurve.org/

[3] - Nakayama, Y. (2018). Drag and Lift. In Introduction to Fluid Mechanics (pp. 177–201).
Elsevier. https://doi.org/10.1016/b978-0-08-102437-9.00009-7

[4] - Maxemow, S. (2013). That’s a Drag: The Effects of Drag Forces. In Undergraduate Journal of
Mathematical Modeling: One + Two (Vol. 2, Issue 1). University of South Florida Libraries. https://
doi.org/10.5038/2326-3652.2.1.4

[5] - Hall, N. (2021, May 13). Similarity Parameters. NASA. Retrieved from https://
www.grc.nasa.gov/www/k-12/airplane/airsim.html

[6] - Jorgensen, L. H. (1973, January 1). Prediction of static aerodynamic characteristics for space-
shuttle-like and other bodies at angles of attack from 0 deg to 180 deg. NASA. Retrieved from
https://ntrs.nasa.gov/citations/19730006261

[7] - Barrowman, J. S. (1967, March 1). The practical calculation of the aerodynamic characteristics
of slender finned vehicles. NASA. Retrieved from https://ntrs.nasa.gov/citations/20010047838

[8] - Cheeseman, I. (1976). Fluid-Dynamic Drag: Practical Information on Aerodynamic Drag and
Hydrodynamic Resistance. S. F. Hoerner. Hoerner Fluid Dynamics, Brick Town, New Jersey. 1965.
455 pp. Illustrated. $24.20. The Aeronautical Journal (1968), 80(788), 371-371. doi:10.1017/
S0001924000034187

[9] - Moore, F. G., Wilcox, F., & Hymer, T. (1994). Base drag prediction on missile configurations.
In Journal of Spacecraft and Rockets (Vol. 31, Issue 5, pp. 759–765). American Institute of
Aeronautics and Astronautics (AIAA). https://doi.org/10.2514/3.26509

[10] - Moore, F.G., Wilcox, F.J., & Hymer, T.C. (1992). Improved Empirical Model for Base Drag
Prediction on Missile Configurations Based on New Wind Tunnel Data.

[11] - Hoerner, S. F. (1965). Fluid-dynamic drag: theoretical, experimental and statistical
information. Retrieved from http://ftp.demec.ufpr.br/disciplinas/TM240/Marchi/Bibliografia/
Hoerner.pdf

29

[12] - Convict, L. L., & Faro, I. D. V. (1961). Handbook of Supersonic Aerodynamics. section 8.
Bodies of Revolution. Defense Technical Information Center. Retrieved from https://apps.dtic.mil/
sti/pdfs/ADA279187.pdf

[13] - Vallini, L. (2015). Static and dynamic analysis of the aerodynamic stability and trajectory
simulation of a student sounding rocket. Retrieved from https://etd.adm.unipi.it/t/
etd-04012015-151632/

[14] - Gaunaa, M. (2006). Unsteady 2D potential-flow forces on a thin variable geometry airfoil
undergoing arbitrary motion. Denmark. Forskningscenter Risoe. Risoe-R No. 1478(EN) Retrieved
from https://orbit.dtu.dk/en/publications/unsteady-2d-potential-flow-forces-on-a-thin-variable-
geometry-air

[15] - Barrowman, J. S. (1966, April 1). FIN - A computer program for calculating the aerodynamic
characteristics of fins at supersonic speeds. NASA. Retrieved from https://ntrs.nasa.gov/citations/
19660021056

[16] - United States. (1968). Design of aerodynamically stabilized free rockets. Washington, D.C:
Headquarters, U.S. Army Materiel Command. Retrieved from http://mae-nas.eng.usu.edu/
MAE_5900_Web/5900/USLI_2010/PDF_files/rocket_handbook.pdf

[17] - Niskanen, S. (2013, May 10). OpenRocket technical documentation. OpenRocket. Retrieved
from https://openrocket.info/documentation.html

[18] - Barrowman, J. S. & Barrowman, J. A. (1966, August 18). The theoretical prediction of the
center of pressure. Retrieved from http://www.nar.org/wp-content/uploads/2016/01/
barrowman_cp_extended_edition.pdf

30

	Index
	Gravitational force
	Aerodynamic Properties

