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Figure 1. A visualization of our method. We extract desired information from the source and reference images and inject these information
into the appropriate spatial regions of the edit image to generate the final output.

Abstract

Recent advancements in text-to-image diffusion models
have significantly improved text-conditioned image gen-
eration and editing. However, expressing fine-grained
modifications through text prompts alone remains inher-
ently limited. To address this, reference-based editing
methods have been explored, but they often require
test-time fine-tuning, additional training, or expensive
test-time computations (e.g., guidance), limiting their
practicality and generalizability. We introduce a zero-shot,
training-free and guidance-free reference-based image
editing framework that allows for a wide range of precise
edits by leveraging reference images. Our key innovation is
the Hybrid Attention mechanism, which replaces standard
self-attention in the diffusion U-Net with a novel masked
cross-image attention approach. This mechanism enables
controlled extraction and injection of spatial features from
reference images into a target image during sampling.
Additionally, we propose the use of automatic masks de-
rived from the cross-attention maps of the diffusion UNet to
define region selection, removing the need for manual input.

Figure 2. A preview of our results.



1. Introduction

The rapid advancement of text-to-image (T2I) generative
models has enabled high-quality image generation and edit-
ing from natural language prompts. However, while these
models produce impressive results, prompt-driven genera-
tion remains fundamentally limited in capturing a user’s ex-
act intent. Expressing nuanced edits through text alone is
challenging, as natural language descriptions often fail to
specify the fine details and localized modifications required
for precise image editing.

To address this limitation, many reference-based image
editing methods have emerged. Instead of relying solely on
text, reference images provide additional visual guidance,
allowing for more controlled and targeted edits. However,
existing methods typically fall into one of the following cat-
egories:

• Test-time fine-tuning methods adapt the diffusion U-Net
[12, 21] or an auxiliary model [22] to a given image
by optimizing its parameters during inference. This ap-
proach allows the model to tailor directly to the specific
image. However, these methods are computationally ex-
pensive at test-time and hence impractical for real-time
applications.

• Pretraining-based methods [2, 3, 6, 8, 13, 26–29] train
base diffusion models on large-scale datasets with paired
images for various editing tasks. By leveraging extensive
training, these models learn how to perform specific edits,
enabling faster inference without requiring optimization
at test time. However, this approach is constrained by the
availability of paired training data, limiting the model’s
ability to generalize beyond predefined tasks such as ob-
ject insertion or style transfer.

• Guidance-based methods [5, 16, 18] optimize the latent
embedding throughout the diffusion process using spe-
cialized score functions, enabling more precise control
compared to text-only inputs. While these approaches do
not require additional training, they impose a substantial
computational cost during inference, increasing both run-
time and GPU memory consumption due to the need for
backpropagation through the diffusion model.

Existing methods that are both training-free and
guidance-free are limited in scope, often supporting only
basic edits like object insertion [7, 14, 25] or global
style/structure/appearance transfer [1, 4, 11, 15], failing to
provide a generalizable framework for more diverse, com-
plex editing tasks.

To this end, we introduce a novel training-free, zero-
shot, and guidance-free framework for reference-based im-
age editing that extends beyond basic edits, supporting a
wide range of localized, and high-fidelity modifications in a
fully automatic manner. Furthermore, our framework pro-
vides deeper insights into the role of attention layers in dif-

fusion models, shedding light on their semantic reasoning
capabilities.

1.1. On-Device Image Editing
Beyond expressiveness, the practicality of image editing

methods significantly depends on computational efficiency
and their ability to run locally on user devices. With the rise
of powerful yet compact neural architectures, state-of-the-
art diffusion models such as Stable Diffusion 2.1 have been
successfully adapted to run efficiently on personal comput-
ing devices, including laptops and smartphones [19]. This
shift toward on-device editing brings critical privacy advan-
tages, as sensitive user data—often present in personal pho-
tos or creative projects—no longer needs to be uploaded to
external servers, mitigating concerns regarding data secu-
rity and confidentiality.

Moreover, enabling efficient, local image editing directly
empowers user creativity. Users gain the flexibility to ex-
periment with complex and nuanced image modifications
in real-time and on-the-go, opening up new possibilities for
interactive and iterative creative workflows. This approach
aligns particularly well with emerging mobile-first creative
tools, allowing everyday users—not just professionals—to
benefit from advanced, privacy-conscious editing capabili-
ties wherever they are.

2. Preliminaries
2.1. DDIM Inversion

Denoising Diffusion Probabilistic Models (DDPM) [10,
23] are trained to optimize the objective:

min
θ

Ez0,ϵ∼N (0,I),t∼Uniform(1,T ) ∥ϵ− ϵθ(zt, t, C)∥22 .

Here, the diffusion model learns to predict the noise com-
ponent ϵ given a noisy latent zt, timestep t, and condition-
ing information C. During sampling, the noise is gradually
removed by sequentially predicting it across T timesteps,
transforming a noisy latent zT to a clean latent z0.

Denoising Diffusion Implicit Models (DDIM) [24] ex-
tend the diffusion framework by introducing a deterministic
sampling process. Unlike the stochastic nature of DDPMs,
DDIM ensures consistent transformations between noisy la-
tents and clean latents. This makes it particularly useful for
latent reconstruction and editing, as it preserves structural
and semantic consistency throughout the sampling trajec-
tory. Given an initial noisy latent zT , the DDIM sampling
process iteratively refines it into a clean latent z0. This is
achieved through a deterministic update rule:

zt =
1

√
αt+1

(
zt+1 −

1− αt+1√
1− ᾱt+1

· ϵθ(zt+1, t+ 1)

)
.



DDIM inversion [17] maps a starting latent z0 to a cor-
responding noisy latent zT . The DDIM inversion follows a
deterministic update rule:

zt+1 =
√
ᾱt+1ẑ0 +

√
1− ᾱt+1 · ϵθ(zt, t),

where the estimated clean latent ẑ0 is given by:

ẑ0 =
zt −

√
1− ᾱt · ϵθ(zt, t)√

ᾱt
.

Through iterative application of the DDIM inversion update
rule, an initial clean latent z0 is transformed into progres-
sively noisier latents zt, with the final noisy latent zT cap-
turing the structural and semantic properties of the origi-
nal latent while aligning with the learned diffusion process.
This latent representation serves as the starting point for
downstream tasks such as image reconstruction or image
editing.

2.2. Diffusion U-Net Architecture
Many pretrained text-to-image (T2I) diffusion models are

text-conditioned U-Nets, consisting of an encoder-decoder
structure. These models employ a combination of convolu-
tional layers, self-attention layers, and cross-attention lay-
ers. Self-attention helps capture both local and global de-
pendencies, while cross-attention allows for effective con-
ditioning on textual prompts.

2.2.1. Self-Attention
Self-attention plays a crucial role in conveying both

short-range and long-range dependencies across the entire
latent. It ensures a coherent image construction by enabling
each spatial position to attend to every other spatial posi-
tion. The self-attention mechanism is expressed as:

Q := hl,tW
Q
l , K := hl,tW

K
l , V := hl,tW

V
l

where hl,t ∈ R(hw)×d represents the diffusion features at
time step t, and WQ

l ,W
K
l ,WV

l ∈ Rd×d are linear pro-
jections for query, key, and value matrices. The attention
scores are computed as:

A := Softmax
(
QK⊤
√
d

)
where A ∈ R(hw)×(hw) represents the attention map, en-
coding how each pixel in Q corresponds to each pixel in K,
with higher scores indicating higher similarity. Each pixel’s
self-attention output is then computed as:

hl,t ← AV

This operation ensures that each pixel aggregates informa-
tion from other pixels, weighted by their relevance, result-
ing in spatially aware feature refinement.

2.2.2. Cross-Attention
In cross-attention layers, the query (Q) is derived from

the spatial latents, while the key (K) and value (V) orig-
inate from the encoded textual prompt. This mechanism
enables effective conditioning of the generated latents on
text. The cross-attention map [9] in this case reflects how
each pixel attends to different textual tokens, guiding the
diffusion model in aligning textual attributes with specific
spatial regions. Notably, the cross-attention map allows us
to identify the spatial regions associated with particular ob-
jects described in the prompt.

3. Method
Our approach begins with DDIM inversion applied to

both the source and reference images, denoted as zs,0 and
zr,0, respectively. During each inversion step, we store
the queries (Q), keys (K), and values (V ) from the self-
attention and cross-attention layers. The final noised latent
of the source image zs,T produced by the DDIM inversion
is used as the starting latent for the edit path. zs,T serves as
a strong initialization point for image editing by encapsu-
lating essential structural information about the image thus
facilitating accurate reconstruction. In the edit path, we re-
place the self-attention blocks with a novel Hybrid Atten-
tion mechanism. This mechanism allows for fine-grained
extraction and injection of information in the edit path via
the stored queries (Q), keys (K), and values (V ) of the self-
attention layers. At the end of the edit path, we arrive at our
edited latent ze,0 This process is outlined in Figure 3.

3.1. Hybrid Attention
As illustrated in Figure 1, our approach follows a two-

step process: (1) extracting relevant information from the
source and reference images, and (2) injecting these infor-
mation into the appropriate spatial regions of the edit image
to generate the final output.

To achieve information extraction, we apply a masked
cross-image attention (MaskAttn) mechanism. Specifically,
we use the query (Qe) from the edit image while utilizing
the key (Ks,Kr) and value (Vs,Vr) representations from
the source and reference images, respectively. The extrac-
tion process is guided by a binary extraction mask Ms or
Mr, which defines the spatial regions to be extracted from
each image. :

Os = MaskAttn(Qe,Ks,Vs;Ms)

Or = MaskAttn(Qe,Kr,Vr;Mr)

MaskedAttn(Q,K,V;M) = Softmax
(
QK⊤
√
d

+M

)
V

where M assigns large negative values (e.g., −∞) to po-
sitions to be excluded. Once the relevant information has



Figure 3. An overview of the architecture. We perform DDIM inversion on the source zs,0 and reference zr,0 images. During each
inversion step, we store the queries (Q), keys (K), and values (V ) from the self-attention and cross-attention layers. The final noised latent
of the source image zs,T produced by the DDIM inversion is used as the starting latent for the edit path. In the edit path, we replace the
self-attention blocks with the Hybrid Attention mechanism to extract and inject desired information via the stored queries (Q), keys (K),
and values (V ) of the self-attention layers. At the end of the edit path, we arrive at our edited latent ze,0

Figure 4. Hybrid Attention block.

been extracted, we proceed to information injection, ensur-
ing that the extracted features are transferred to the desired
regions of the edit image. This is controlled by a binary in-
jection mask Me, which specifies where the injected infor-
mation should be placed. The final Hybrid Attention output
is computed as follows:

HybridAttn = Os ⊙ (1−Me) +Or ⊙Me

3.2. Automatic Masks
Masks play a crucial role in our pipeline by defining

the regions for information extraction and injection. While

users have the option to manually specify the source ex-
traction, reference extraction and injection masks, automat-
ing this process is often preferable. To generate masks au-
tomatically, we utilize cross-attention maps extracted from
the U-Net’s cross-attention layers during the DDIM inver-
sion process. These maps act as heatmaps, highlighting the
relevance of each textual token to different regions of the
image. By applying a thresholding operation to these atten-
tion maps, we obtain binary masks for objects of interest,
which can then be used as the extraction or injection masks.

4. Experiment
We applied our method to the Stable Diffusion 2.1 [20]

model using publicly available pretrained weights. All edit-
ing experiments were conducted on real images, covering a
variety of subjects including human portraits, animals and
objects.

4.1. Types of Edits
Our method enables a variety of fine-grained edits,

including reference-based object replacement, reference-
based object insertion, object removal as well as prompt-
based edits. The extraction and injection masks can either



be manually provided by the user or taken from the cross-
attention maps. Figure 5 depicts some of our results.

4.2. Optimizations
4.2.1. Layer Configuration for Hybrid Attention

We explored different configurations of layers for inte-
grating our proposed Hybrid Attention mechanism in place
of self-attention within the edit path. The Stable Diffusion
2.1 model consists of three main resolution blocks, each
capturing different levels of abstraction.

• Deeper layers in the network encode global structure and
high-level semantics. Modifying these layers can intro-
duce unintended global changes, disrupting the overall
composition of the image.

• Shallower (higher) layers focus on fine-grained textures
and localized details, making them more suitable for pre-
cise edits while preserving the broader structure.

By strategically selecting which layers to modify, we en-
sure that edits remain localized and do not disrupt the struc-
tural integrity of the original image.

4.2.2. Post-Processing for Mask Refinement
Cross-attention maps, particularly during early diffusion

steps, can be noisy, making direct binary thresholding inef-
fective. To address this, we apply a Gaussian filter to reduce
noise, followed by a normalization step to rescale attention
values to a consistent range. Next, we apply thresholding,
where pixels exceeding a selected threshold are retained as
part of the mask. To further refine the mask and improve
smoothness, we perform morphological operations, includ-
ing dilation to expand regions and erosion to remove small
artifacts. This results in cleaner, more robust masks suitable
for use in Hybrid Attention.

4.3. Quantitative Results
We evaluate our pipeline on a set of image pairs con-

structed similarly to the COCO EE dataset introduced in the
Paint by Example paper [26]. Each pair consists of a source
image, a reference image, a mask specifying the target re-
gion, and an associated editing prompt to support controlled
experiments in exemplar-based image editing.

Different types of edits present distinct challenges, mak-
ing it difficult to generalize a single configuration across
tasks. We found that swapping higher-down and higher-up
layers with our Hybrid Attention mechanism provides the
most reliable results across the tested range of tasks.

Our experiments focus on object insertion and replace-
ment actions. These tasks stress both the precision of spa-
tial control and the ability to preserve background fidelity.
We compare two versions of our method, one using man-
ual masks, and another relying on automatically generated
masks derived from cross-attention maps.

Figure 7. Visualization of our editing metrics and comparisons.
(Left) The edited result (top) and reference image (bottom), used
for computing the CLIP image-to-image (I2I) similarity. (Middle)
The edited result (top) and source image (bottom), highlighting the
regions where we measure the L2 difference. (Right) The original
image (top) and final edited image (bottom), employed for com-
puting CLIP alignment with the edit prompt.

Metric Automatic Masks Manual Masks

Copy Region CLIP-I2I 0.767 0.847
Background L2 Distance 0.058 0.052
CLIP-I2P Improvement (%) +10.8% +17.9%

Table 1. Quantitative results comparing Hybrid Attention with and
without manual masks. Manual masks offer slightly improved re-
gion alignment and background preservation, preventing corrup-
tion and improving the overall edit quality. In contrast, the au-
tomated mask pipeline achieves competitive results without de-
manding user input.

In addition to the qualitative results presented earlier, we
measure three quantitative metrics across our test set to as-
sess the editing performance:

• Copy Region CLIP-I2I Score: We extract the edited re-
gion from the final image and compare it against the cor-
responding region in the reference image using a CLIP-
based cosine similarity. A higher score indicates better
semantic preservation, though a perfect score of 1 is not
expected since the content is adapted (e.g., shape or tex-
ture) to fit the new context.

• Background L2 Distance: We compute the pixel-wise
L2 distance between the unedited (background) regions
of the source image and the final edited image. Lower
values indicate that the background is better preserved.

• CLIP-I2P Improvement (%): We measure the CLIP
similarity between (i) the source image and the edit
prompt, and (ii) the final edited image and the same
prompt. The percentage change quantifies how much
closer the final image aligns to the edit prompt relative
to the original.



Figure 5. Our results prove our method to work across a wide range of editing domains, including reference-based object replacement,
reference-based object insertion, object removal and prompt-based edits. For some of the prompt-based edits, we utilized an adaptive (A)
cross-attention map as the insertion mask.

Figure 6. Automated thresholding for masks derived from cross-
attention maps.

Table 1 shows an example of the average results over our
evaluation set. The CLIP-I2I score indicates that, on aver-
age, the edited region closely resembles the reference con-
tent without being a mere copy-paste. The low background
L2 distance confirms that the unedited portion of the source

image remains largely unchanged. Finally, the CLIP-I2P
improvement demonstrates that our edits make the image
more aligned with the specified edit prompt.

5. Conclusion

We introduce a zero-shot, training-free, and guidance-
free framework for precise, reference-based image edit-
ing. Our novel Hybrid Attention mechanism enables fine-
grained, localized control by leveraging masked cross-
image attention, allowing seamless extraction and injection
of visual features from reference images without compro-
mising computational efficiency. Moreover, our automatic
mask generation approach, derived from the diffusion U-
Net’s cross-attention maps, eliminates the need for man-
ual intervention, significantly enhancing usability and prac-
ticality. Through extensive experimentation, we demon-



strate strong semantic alignment with both reference images
and textual prompts while preserving background fidelity.
Beyond its practical utility, our method provides valuable
insights into the semantic reasoning processes within dif-
fusion U-Nets, highlighting how different attention layers
contribute to spatial understanding and feature abstraction.
Our work illustrates how pretrained models can be further
exploited for advanced image editing, unlocking new poten-
tial for real-time, privacy-focused applications and interac-
tive creative workflows.
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